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I am pleased to submit a portfolio of work samples, which showcases my skills in science communication, 
programming/software development, and empirical research.  
 
1. Science Communication  
This section includes my published Nature Neuroscience commentary, which outlines a theoretical framework 
for science communication. It also provides practical resources for delivering both didactic and hands-on 
training in science communication. Link: https://www.nature.com/articles/s41593-024-01646-y.pdf  
 
2. Programming/Software Development 
In this section, I highlight two projects that demonstrate my skills in Python programming and software 
development: 
 

A. NeuroCluster  
A Python package for linking neural signals with latent cognitive variables extracted from computational 
models. This project required the implementation of a novel statistical approach while exploring 
strategies to optimize computing time and resource efficiency. Manuscript is under review at Journal of 
Open Source Software. GitHub Repository: https://github.com/aliefink/NeuroCluster  
 

B. Python Tutorial for Computational Modeling of Behavior   
Adapted from Wilson & Collins (2019) MATLAB-based tutorial, this resource has been widely used for 
training at Mount Sinai’s Center for Computational Psychiatry. GitHub Repository: 
https://github.com/christinamaher/10SimpleRulesPythonTutorial  
 

C. Experimental Paradigm Design and Gamification  
Tutorial on gamifying behavioral paradigms to enhance universal design and optimize user experience, 
improving both participant retention and data quality. This tutorial has been implemented by 
researchers at Icahn School of Medicine and University College London, driving collaborative 
innovation in research applications. GitHub Repository: 
https://github.com/christinamaher/Canva_VideoInstructions_Tutorial  

 
3. Empirical Research 
This section highlights three first-author papers: 
 

A. Maher et al. (2024)  
Selected for a talk at the 2024 Conference on Computational Cognitive Neuroscience among 500+ 
submissions, this study leverages behavioral modeling and direct brain recordings to investigate real-
world adaptive decision-making. A manuscript is in preparation. Publication link: 
https://2024.ccneuro.org/pdf/548_Paper_authored_CCN2024_Maheretal.pdf  
 

B. Maher et al. (2024)  
Published in PNAS, this study investigates the relationship between limbic neuromodulation and patient 
well-being. I coordinated a diverse team of multidisciplinary stakeholders, aligning efforts to leverage 
scientific inquiry to advance patient wellbeing. Link: 
https://www.pnas.org/doi/10.1073/pnas.2409423122  
 

C. Maher et al. (2025) 
Accepted for presentation at RLDM, this work leverages a novel neural network approach for 
behavioral inference with human behavioral modeling. Link:  
https://drive.google.com/file/d/1lDnHZnwAeAEEtD_lda9FkvuuMhUJw1fz/view?usp=sharing 
 

 
Thank you for considering my portfolio. I look forward to discussing it further during the review process. 
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A guide to science communication training  
for doctoral students

Christina Maher, Trevonn Gyles, Eric J. Nestler & Daniela Schiller

E!ective science communication is necessary 
for engaging the public in scienti"c discourse 
and ensuring equitable access to knowledge. 
Training doctoral students in science 
communication will instill principles of 
accessibility, accountability, and adaptability 
in the next generation of scienti"c leaders,  
who are poised to expand science’s reach, 
generate public support for research funding, 
and counter misinformation. To this aim,  
we provide a guide for implementing  
formal science communication training for 
doctoral students.

“We have not known a single great scientist who could not discourse 
freely and interestingly with a child.”—John Steinbeck1

Many of us remember our first experience with science, or the 
first time we heard about a scientific finding that ignited our curios-
ity. These early experiences draw us in, capture our imagination, and 
provide us an entry point we may otherwise never know exists. We 
can attribute these moments that sparked our intellectual curios-
ity to the science communicators who took the initiative and the 
accountability to share science with a wider audience. Here, we dis-
cuss why and how to set up training for doctoral students to enable 
them to become the next generation of science communicators, and 
thereby to expand the future scientific workforce, broaden the public 
reach of our science, and increase public support for funding for  
scientific research.

According to UNESCO’s 2021 Science Report, there are approxi-
mately nine million full-time researchers world-wide2. However, with 
a global population of approximately eight billion, it is imperative that 
science is accessible to far more than just about 0.1% of the popula-
tion, creating a global need for communicators. The commodity that 
researchers and educators exchange is information, and the quality 
of this exchange depends on our ability to communicate effectively.

We live in an interconnected world with tremendous access to 
information. This brings both opportunity and risk, as scientific (or 
pseudo-scientific) information can easily spread through various 
media platforms. It is imperative that we train scientists to be account-
able, accessible, and adaptable, so that they may effectively engage 
with the public through varied platforms, promote scientific literacy, 
and mitigate the risks of misinformation3,4. Training researchers to 
communicate accessibly and accurately is instrumental for building 
trust with a wider audience5,6. Indeed, trust is the foundation for greater 

public awareness, interest, and policy adherence to science-based 
issues, such as climate change7 and mental health8.

If we instill good communication practices in doctoral students, 
they will be better equipped to inform and influence policy makers and 
the public. In this way, scientists can foster a rich and vibrant discourse 
that extends our work’s reach and helps to strengthen our society. This 
is particularly important because many students trained as basic scien-
tists will pursue non-academic careers. According to the US National 
Science Foundation’s Survey of Doctorate Recipients, only 23% of 
life and health sciences PhD graduates held tenured or tenure-track 
positions in academia in 2017. Training in effective science communi-
cation prepares students for a wide range of careers, including educa-
tion, the biotechnology and pharmaceutical industries, government,  
and publishing.

We believe that the essential attributes of effective science com-
municators can be summarized by the ‘three As’: accessible, account-
able, and adaptable. Accessible communication practices entail 
conveying scientific concepts to a wide range of audiences regardless 
of age and background9. Accountability requires gaining the trust of the 
target audience through transparent communication and responsible 
dissemination of information. Accessible and accountable communica-
tion practices construct a bridge of trust between communicators and 
their audience, facilitating a reciprocal exchange of knowledge10. These 
practices are crucial for sharing knowledge beyond institutional and 
geographic borders11. Proficiency in this process allows communica-
tors to be adaptable to variety of media and contexts for disseminating 
science12. These attributes build on each another to ultimately enhance 
the effectiveness of science communication efforts (Fig. 1).

Currently, science communication is not a universal component 
of the curriculum in neuroscience doctoral programs. Our goal in 
writing this piece is to explain why PhD-level science communication 
courses are needed, and to share practical information about their 
implementation. We aim to encourage funding agencies to promote 
the development of this training, and to allocate resources to support it. 
The example syllabus we provide (Table 1) is designed to promote acces-
sible, accountable, and adaptable science communication through 

 Check for updates

Key modules
Accessible
Convey scientific concepts clearly to a wide range of 
audiences, regardless of age and background

Accountable
Foster trust through transparent communication and 
responsible dissemination of information

Adaptable
Use diverse communication tools to reach audiences 
across media and contexts

• Science education
• Science writing
• Science podcasting

• Data visualization
• Public outreach
• Science policy

• Social media
• Improvisation
• On-camera presentation 

Three As of e!ective science communicators

Fig. 1 | The three As of effective science communicators. Examples of the 
modules used to instil each are given.
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Each speaker provides pre-class materials, an in-class hands-on 
workshop, and an optional post-class assignment. Students can choose 
one of these assignments as their final class project, which they will 
develop into a complete product, such as a blog post, podcast episode, 
science website, elementary school class, or storytelling performance. 
We expect that by completing this course, students will be able to iden-
tify the needs of their diverse audiences, effectively and flexibly convey 
their research’s significance using different media, and maintain the 
integrity of scientific principles. These skills create a holistic scientist, 
poised to serve as a changemaker on a global scale.

This course structure could be adapted to meet the needs of 
any institution and its students. For example, different weights 
could be put on oral or written communication, on education, or on 
public interfacing projects. In fact, each of these topics could con-
stitute a course in itself. The emphasis on lectures versus hand-on 
workshops can also be adjusted according to institutional needs 
and capabilities.

We hope that these resources will decrease the barrier to entry 
for institutions seeking to implement such educational programs for 
trainees. We also hope that students will take this practical framework 
as a guide for academic development. Students provide feedback 
before and after the course as well as after each module to track the 
course’s efficacy and to ensure that material is tailored to the students’ 
unique needs and interests. Our goal is to inspire scientists across 
disciplines to uphold the three As of science communication — acces-
sibility, accountability, and adaptability — when pursuing opportuni-
ties to communicate their research and to effectively embed science 
in everyday life.

didactic lectures and hands-on activities, designed to engage students 
in best practices for effective science communication.

We have specifically created the ‘Effective Science Communica-
tion’ course at the Icahn School of Medicine at Mount Sinai, which was 
initiated by students in 2018, and has since been completed by more 
than 100 students. This is a semester-long course delivered annually to 
approximately 20 graduate students under the auspices of the Fried-
man Brain Institute at Icahn Mount Sinai. We strive for this material to 
be delivered in a classroom setting that is respectful of each student’s 
comfort and experience with science communication. The class is 
intended to be a safe space for students to practice new skills while 
receiving supportive feedback from experts across various domains.

As an exemplar course structure (Table 1), there are two sets of 
modules, representing the two forms of communication: written and 
oral. In each set, four modules focus on different media for communi-
cating one’s science. Each module consists of two parts — theoretical 
work and a hand-on workshop, which could be delivered within a 3-h 
session. We emphasize hosting speakers who reflect diverse personal 
and professional backgrounds and identities, and who can best connect 
with, inspire, and support the students in their development as effec-
tive science communicators. Previous lecturers include journal editors, 
podcasters, journalists, lobbyists, press officers, industry leaders, TV 
presenters, improvisation and storytelling coaches, and social media 
experts. Speakers are typically scientists who pursue their preferred 
mode of science communication either full-time or to supplement 
their academic research. This allows students to explore alternative 
career paths or be inspired in ways to productively integrate science 
communication in their research careers.

Table 1 | Effective science communication course breakdown

Module topic Objective Project Evaluation

Written communication modules

Science on social media Learn to develop professional identity 
and create an online presence for 
scientific discourse

Creation of a personal website or a 
social media account for the purpose 
of conveying scientific knowledge

Feedback on ways to improve their 
social media presence to appeal to their 
professional interest

Creating a science curriculum Learn inclusive teaching techniques for 
middle school science education

Design of a lesson plan, application  
of teaching techniques learned 
during workshop

Quality and relevance of lesson  
plan, effectiveness of teaching 
techniques applied

Illustration and visualization Learn techniques for visualizing data and 
scientific projects

Creation of graphical abstracts of 
student’s dissertation project

Feedback on figures to improve 
schematic quality

Science writing for non-science 
audiences

Learn principles of popular science 
writing and journalistic reporting

Creation of a science blog post, 
op-ed, or commentary geared  
toward non-scientists

Peer review of written pieces and 
implementation of feedback to improve 
reader accessibility

Oral communication modules

Improvisation and on-stage 
performance

Develop skills in science communication 
through improvisation, role play,  
and storytelling

One time participation in on-stage 
performance of improvisation, 
storytelling or similar

Improved ability to think creatively 
about science communication, 
increased confidence in public speaking

Public engagement in 
neuroscience

Learn skills for engaging with the  
public, brainstorm ideas for public 
engagement initiatives

Development of a strategic plan for a 
public engagement initiative

Effectiveness and relevance of public 
engagement initiative

Science podcasting Learn interview techniques, practice 
interviewing skills

Create one podcast episode and/or 
participate in podcast interviewing

Understanding of key elements of 
science podcasting, quality of interview 
skills demonstrated

Science policy and advocacy Learn how to approach and pitch to local 
government representatives

Plan or participate in a meeting with 
your local representative to advocate 
for science

Efficacy of the communication strategy 
and feedback from meeting with local 
representative

An exemplar syllabus based on the Effective Science Communication course held at the Icahn School of Medicine at Mount Sinai. This course structure could be adapted to meet the needs of 
any institution and its students.
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Summary11

Cognitive neurophysiology offers a unique framework for studying cognitive brain-behavior12

relationships by relating electrophysiological signals to complex behaviors. With the advent of13

new technical and behavioral paradigms, researchers can design cognitive experiments that14

leverage both the spatiotemporal resolution of electrophysiological data and the complexity15

of continuous behavioral variables. Analyzing these data requires sophisticated statistical16

methods that can interpret multidimensional neurophysiological data and dynamic, continuous17

behavioral variables. Often used statistical frameworks for nonparametric, cluster-based18

statistical tests are specifically focused on the contrast between discrete behavioral conditions19

but are not suitable for assessing how continuous variables predict the occurrence of clusters20

in neurophysiological data. NeuroCluster is an open-source Python toolbox for analysis21

of two-dimensional electrophysiological data (e.g. time-frequency representations) related to22

multivariate and continuous behavioral variables. NeuroCluster introduces a statistical approach23

which uses nonparametric cluster-based permutation testing in tandem with linear regression24

to identify two-dimensional clusters of neurophysiological activity that significantly encodes25

time-varying, continuous behavioral variables. Uniquely, it also supports multivariate analyses26

by allowing for multiple behavioral predictors to model neural activity. NeuroCluster addresses27

a methodological gap in statistical approaches to relate continuous, cognitive predictors to28

underlying electrophysiological activity with time and frequency resolution, to determine the29

neurocomputational processes giving rise to complex behaviors. # Statement of need30

NeuroCluster addresses a methodological gap in cognitive and behavioral neuroscience, by31

providing a Python-based statistical toolbox to relate continuous predictors to two-dimensional32

neurophysiological activity. Continuous predictors vary over an experimental session, reflecting33

dynamic behaviors, underlying cognitive processes, complex movements, trial-varying experi-34

mental conditions, perceptual signals, or value-based trial outcomes (Collins & Shenhav, 2022;35

Hoy et al., 2021; Mathis & Mathis, 2020; ?). Standard analytical approaches for relating36

complex behavioral variables to neuronal activity sacrifice the complexity of neurophysiological37

signals by reducing the dimensionality of neuronal timeseries data (e.g., averaging across38

temporal, spectral, or spatial domains, or dimensionality reduction) (Crosse et al., 2016; Rey39

et al., 2015; Saez et al., 2018; Stokes & Spaak, 2016; ?; ?). Conversely, analysis methods40

that preserve the complexity of neurophysiological data (i.e., two-dimensional timeseries)41

constrain behavioral predictors to discrete conditions (Domenech et al., 2020; Kosciessa et al.,42

2020; Maris & Oostenveld, 2007; ?; ?). Directly linking continuous experimental variables to43

Skular et al. (2025). NeuroCluster: A Python toolbox for nonparametric cluster-based statistical testing of neurophysiological data with respect
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two-dimensional physiological timeseries data offers a rigorous way to study brain-behavior44

relationships, by maintaining the complexity of dynamic behavior, without sacrificing the45

resolution of event-related neurophysiological activity.46

NeuroCluster uses cluster-based permutation testing to identify significant two-dimensional47

clusters with respect to continuous task variables. Cluster-based nonparametric statistical48

testing is a standard approach to analyze two-dimensional event-related time series data,49

while controlling for multiple comparisons and reducing family-wise error rates (Cohen, 2014;50

Groppe et al., 2011; Maris, 2012; Maris & Oostenveld, 2007; Nichols & Holmes, 2002).51

Neurophysiological activity is typically aggregated by condition to perform a two-sample52

cluster-based permutation test, which tests whether the neuronal encoding patterns differ53

between two discrete task conditions, rather than continuous, trial-varying features (Bullmore54

et al., 1999; Maris & Oostenveld, 2007). While two-sample cluster-based permutation tests55

provide a nonparametric statistical inference tool for identifying the presence of significant56

clusters of activity between two conditions, they are insufficient for identifying the presence of57

clusters as a function of continuously varying predictors. NeuroCluster provides a solution58

to this analytical gap by performing linear regressions at individual points across the 2D59

neural matrix. This approach enables users to quantify the degree to which a continuous60

predictor is related to neurophysiological activity at the pixel-level and to perform analyses with61

multivariate behavioral data, by incorporating multiple continuous or categorical covariates62

in the regression models. The t-statistics corresponding to the predictor of interest from the63

pixel-wise regressions are thresholded by a critical t-statistic to control for the FDR, creating64

a binary 2D matrix (Genovese et al., 2002). The binary 2D matrix is then used to identify65

putative 2D clusters of activation related to the continuous predictor of interest. This process is66

repeated many times with the predictor of interest randomly permuted to produce a surrogate67

distribution of 2D clusters. Clusters that survive cluster-based permutation testing are classified68

as significant regions of activation with respect to the specified continuous predictor.69

NeuroCluster is applicable for numerous analysis goals; the major use cases are performing70

an initial exploratory analysis to generate specific hypotheses, determine data-driven windows71

interest, or to identify regional patterns of significant clusters within and between subjects.72

Future adaptations of NeuroCluster may implement mixed effects regressions, nonlinear73

mapping models, or group-level analysis frameworks (Bianchi et al., 2019; Ivanova et al.,74

2022; König et al., 2024; Yu et al., 2022). We demonstrate our approach with human75

intracranial local field potential data, but NeuroCluster is applicable for all types of two-76

dimensional neurophysiological measures (e.g., spatiotemporal clusters from EEG/MEG, cross-77

frequency interactions). To our knowledge, NeuroCluster presents a novel Python-based78

statistical software package. NeuroCluster is designed to supplement existing Python-based79

electrophysiological analysis toolboxes (Donoghue et al., 2020; Gramfort, 2013; Kosciessa et80

al., 2020; Whitten et al., 2011), particularly MNE-Python.81

NeuroCluster Documentation82

NeuroCluster is accompanied by a detailed tutorial which outlines the workflow (Fig. 1)83

for implementing this approach with time-frequency power estimates from multi-region LFP84

recording.85
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Figure 1: NeuroCluster workflow. This approach involves three key steps: (1) determine cluster statistic
in true data, (2) generate a null distribution of cluster statistics by permuting dataset, (3) determine
significance of true cluster statistic against null distribution.

Below we outline the statistical approach implemented by NeuroCluster for performing86

nonparametric permutation-based cluster testing using time-frequency resolved power estimates87

from neural data estimated using (?) and continuous predictors (i.e., latent cognitive processes,88

behavior, or experimental conditions). In these example data, we are testing the hypothesis89

that RPEs are significantly encoded in the electrophysiological signal from a given iEEG channel90

time-frequency representation (TFR). The following methodological description is based on91

data collected from a neurosurgical epilepsy patient undergoing stereotactic EEG (sEEG)92

monitoring for treatment-resistant depression. During the monitoring period, the patient93

performed a value-based decision-making task while local field potentials (LFPs) were recorded94
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from both cortical and subcortical sites. By analyzing the patient’s behavior during the task,95

we derived continuous variables representing hypothesized latent cognitive processes—such as96

the trial-by-trial computation of reward prediction errors (RPEs)—to examine their relationship97

with neural activity.98

1. Determine cluster statistic in true data99

A. Define clusters: At each time-frequency index, we perform a linear univariate (or multivariate)100

regression using behaviorally-derived independent variables (e.g., latent cognitive variables,101

behavioral measures, task conditions) to predict neuronal activity (i.e., power). The β coefficient102

represents the strength and direction of the relationship between each independent variable103

and the dependent variable. It is estimated from the regression model and reflects how changes104

in the independent variable are associated with changes in power at the specific time-frequency105

pair. Pixel-wise regressions are parallelized for speed. For each time-frequency pair, the β106

coefficient for the regressor of interest (the independent variable of primary interest) is extracted107

from the regression results (Fig 2A). A t-statistic is computed for the β coefficient to capture108

how significantly different it is from zero (Fig 2B). A significance threshold is applied to the109

t-statistics of the β coefficient for the regressor of interest. If the t-statistic for a time-frequency110

pair exceeds the significance threshold, the pair is deemed significant. Clusters are then defined111

as adjacent time-frequency pairs where all pairs within the cluster have t-statistics exceeding112

the threshold, according to the test’s desired tails (Fig 2C).113

B. Compute cluster statistics: For each identified cluster, sum the t-statistics of all time-114

frequency pairs within the cluster. In a two-tailed test (the default), compute both the115

maximum and minimum cluster sums (Fig 2D).116

2. Generate null distribution of cluster statistics117

A. Permutation procedure: Labels for the behavioral predictor of interest are shuffled for the118

desired number of permutations.119

B. Recalculate cluster statistic: Steps 1A/1B are repeated to define clusters and compute120

cluster statistics for each permuted dataset.121

C. Construct null distribution: The cluster statistics from all permutations are compiled to122

create a null distribution, representing the distribution of cluster statistics under the null123

hypothesis (Fig 2E). The permuted TFR regressions are also parallelized at the pixel-level,124

while each permutation is performed sequentially. We tested many iterations of these functions125

with different parallelization approaches and sequential permutation-level computations with126

pixel-level parallelization within each TFR regression was the fastest method.127

3. Determine cluster significance128

A. Compare true cluster statistic to null distribution to compute p-values: The proportion of129

cluster statistics in the null distribution falling above (or below) the true cluster statistic(s)130

determines the p-value associated with the cluster(s) identified in the true data (Fig 2E).131

Skular et al. (2025). NeuroCluster: A Python toolbox for nonparametric cluster-based statistical testing of neurophysiological data with respect
to continuous predictors. Journal of Open Source Software, ¿VOL?(¿ISSUE?), ¿PAGE? https://doi.org/10.xxxxxx/draft.

4

https://doi.org/10.xxxxxx/draft


DRAFTFigure 2: NeuroCluster methods. A. β coefficients for continuous predictor of interest (RPE) predicting
power in given time-frequency pair (red outline = maximum positive cluster; blue outline = maximum
negative cluster). B. T-statistics corresponding with βRPE coefficients. C. Clusters as determined using
t-critical threshold. D. Maximum positive and negative clusters determined by summing t-statistics in
identified clusters. E. Null distribution of cluster statistics generated by permuting dataset for predictor
of interest (100 permutations; red dashed line = true cluster statistic.

4. Comparison of results to existing methods.132

To evaluate the advantages of NeuroCluster, we compared its results to those obtained using133

MNE-Python’s two-sample cluster-based permutation test. This approach requires discretizing134

the continuous variable of interest (RPE) into distinct categories, which reduces the resolution135

of the behavioral predictor. Additionally, MNE-Python’s implementation does not support136

multivariate analyses, limiting the ability to model multiple behavioral covariates simultaneously.137

When applying the two-sample cluster test to our data, we did not identify any significant138

clusters of increased or decreased activity related to RPE. In contrast, NeuroCluster successfully139

detected significant clusters (Fig. 2), demonstrating its ability to preserve the richness of140

continuous behavioral variables and reduce the likelihood of false negatives. This comparison141

highlights NeuroCluster as a powerful and flexible alternative to existing statistical methods142

for analyzing continuous brain-behavior relationships.143

5. Metric validation in synthetic data with known ground truth.144

Thus far, we have demonstrated NeuroCluster using biological data. However, because these145

data are experimental, there is no definitive ground truth for the observed neural fluctuations146

associated with behavioral predictors. To validate the NeuroCluster method, we generated147

synthetic TFR data (2-200 Hz, sampling rate = 250, -1 to +1 seconds around “choice”, 1148

channel, 100 trials) with a known linear association between power in a specific time-frequency149

region and a continuous behavioral variable—in this case, the expected value of choice. Code for150

simulating these data is provided in the NeuroCluster repository. We then applied NeuroCluster151

to the synthetic dataset and, as expected, successfully identified a significant positive cluster152

corresponding to the known association embedded in the data (Fig. 3). This validation153

confirms the accuracy of NeuroCluster and provides evidence against its susceptibility to false154

positives.155
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Figure 3: NeuroCluster validation in synthetic data. A. Time-frequency representation (TFR) showing
power differences between high (>0.50) and low (<0.50) expected value trials in synthetic data (1
channel, 100 trials, time-locked to “choice”). B. A significant positive cluster identified in the expected
time-frequency region, consistent with the predefined association embedded in the synthetic dataset.
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Abstract: Reinforcement learning (RL) is tractable in 
multidimensional environments when agents maintain 
efficient state representations, or mental models of relevant 
information. Attention supports state representations in 
service of RL by constraining learning to relevant dimensions. 
However, the physiological processes supporting value 
updating and attentional control are unknown. To investigate 
the neural mechanism supporting these processes we relate 
attention-modulated RL models to neuronal activity recorded 
directly from the prefrontal cortex of neurosurgical patients 
playing a multidimensional decision-making task. These 
models revealed that participants deploy selective attention 
during RL. Model-estimated expected value of the chosen 
stimulus correlated with neuronal activity in the orbitofrontal 
(OFC) and lateral prefrontal cortex (LFPC), though value 
signals in the LPFC were additionally biased by model-
estimated attention. In sum, these results provide 
mechanistic insight into the neuronal implementation of the 
computations involved in attention-modulated RL.  

Keywords: reinforcement learning; attention; 
intracranial electrophysiology; human prefrontal cortex 

Introduction 
Attention supports real-world RL by constraining 
available information in multidimensional environments 
(Niv, 2019).  In doing so, attention facilitates the 
maintenance of state representations, or mental models 
of the environment which include relevant information in 
service of RL. Previous work proposes an algorithmic 
interaction of value-based learning and attention 
(Leong et al., 2017; Niv et al., 2015; Wilson & Niv, 
2012), processes associated with the OFC (Saez et al., 
2018) and LPFC (Buschman & Miller, 2007), 
respectively. However, how these regions interact to 
support multidimensional learning is not well 
understood. Combining intracranial electrophysiology 
(iEEG) and behavioral modeling we hypothesized that: 
(1) participants deploy selective attention during RL, (2) 
OFC and LPFC encode attention-modulated expected 
value, (3) attention biases neural value signals. We 
reveal a neural mechanism by which model-based 
computations are implemented in the OFC and LPFC.  

Methods 

Neurosurgical epilepsy patients (N=20) completed a 
multidimensional decision-making task in which they 
chose between stimuli varying along two dimensions: 
shape and color (Fig. 1A). In each block, participants 
were instructed which dimension was relevant (i.e., 
“shape”). Participants’ selectively attended to the 
relevant dimension and learned which feature (i.e., 
“circle”) was most rewarding. All participants performed 
well (Fig 1B). Gem Hunters captures naturalistic 
learning dynamics, as in the real-world only a subset of 
available information is relevant. Instructing participants 

of the relevant dimension allowed us to investigate 
efficient state representation in service of RL.  

Figure 1: A. Gem Hunters task (6 blocks; 18 trials per 
block). B. Accuracy increased across trials (N=20). 
Dashed line = chance. Error bars = SEM. 

RL models  

We evaluated two RL models: Uniform Attention (UA) 
and Attention at Choice and Learning (ACL). Both 
models are based on Rescorla-Wagner learning rule. 
UA model implements uniform attention to both 
dimensions of each stimulus, whereas ACL model 
implements selective attention to the instructed relevant 
dimension.  We assume participants choose between 
available stimuli based on their expected value (EV):  

!(")"#$$ = ∑ '%% ∙ )"(+, #&)		(Eq. 1)  

!(")"#$$ is the value of stimulus /	on trial 0, ' is the 
attention weight on dimension +, and )"(+, #&) denotes 
the value of the feature in dimension + of stimulus #&. 
Following feedback, a reward prediction error (RPE) is 
calculated:  

1" =	2" − !"(#')		(Eq. 2)  
where !"(#') is the chosen stimulus’ EV. The RPE 
updates the chosen stimuli’s associated feature values:  

)"()(+, #') = )"(+, #') + 	5	 ∙ 	'% 	 ∙ 	1"		(Eq. 3)  
 
The update is scaled by learning rate 5. Choice 
probability was computed using a softmax action 
selection rule. The ACL model’s '% was a free 
parameter implementing selective attention to favor the 
relevant dimension (Eq.1/3). The UA model’s '% was 
fixed at 0.50 for both dimensions.  
iEEG 
Local field potentials were recorded from OFC (N= 144 
electrodes) and LPFC (N=124 electrodes; Fig 3A). We 
leveraged iEEG’s high spatiotemporal resolution to 
measure region-specific fluctuations in neuronal activity 
in response to model-based parameters. As our 
hypotheses involve local information encoding, we 
focused analyses on high gamma activity (70-200 Hz; 
HGA) because this signal captures population-level 
spatiotemporal dynamics and is correlated with fMRI 
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BOLD signal and single-unit spiking (Nir et al., 2007). 
Oscillatory power was z-scored to a baseline ITI.   

Results and Discussion 

Selective attention modulates RL. We used a leave-
one-game-out cross validation procedure for maximum 
likelihood estimation. The ACL model best explained 
participants’ behavior (t(19) = 2.32, p < 0.05; Fig 2A). 
This finding confirms our hypothesis that participants 
deploy selective attention to maintain efficient 
representations of relevant information during RL. 
Participants’ fitted attention weight ('%) was positively 
correlated with task performance (ρ(18) = 0.42, p < 
0.05; Fig 2B), demonstrating that even with instruction, 
sustained selective attention is necessary for 
successful RL in multidimensional environments. 

Figure 2: A. Average choice likelihood per trial shows 
ACL model predicted behavior significantly better than 
UA model (p < 0.05). B. Correlation between fitted 
attention weight and task performance shows attention 
is necessary for successful RL (p < 0.05).  
OFC and LPFC encode attention-modulated value 
signals. As hypothesized, we observed a significant 
effect of attention-modulated EV for the chosen 
stimulus (ΦEV; Eq.1) on OFC and LPFC HGA power. A 
linear mixed effects model nested within subjects was 
conducted within region to estimate how strongly ΦEV 
was represented in OFC and LPFC HGA power while 
controlling for reward, chosen features, and relevant 
dimension. ΦEV was represented significantly in both 
the OFC (β= -0.01, z = -3.78, p < 0.001) and LPFC (β= -
0.02, z = -3.14, p < 0.01; Fig 3B).  

LPFC value signals are biased by attention. We 
found participants’ selectively attend to relevant 
information to guide RL (Fig 2A). Further, individual 
differences in selective attention were related to 
performance (Fig 2B). Therefore, we hypothesized 
neural encoding of value signals will reflect an 
attentional bias. To test this hypothesis, subject-level 
estimates of ΦEV encoding (β coefficient) within region 
were correlated with participants’ fitted attention weight 
('%). There was a significant negative correlation 
between LPFC ΦEV encoding and '% (ρ(18) = -0.69, p 
< 0.001), demonstrating that greater selective attention 
to the relevant dimension is associated with stronger 
ΦEV encoding in the LPFC. This finding suggests the 
neural mechanics of attention and RL are overlapping 
which is supported by findings in nonhuman primates 
(Chiang et al., 2022; Jahn et al., 2024; Wallis et al., 
2001; Wallis & Miller, 2003). This finding was region 
specific (OFC: ρ(17) = -0.13, p = 0.59), suggesting 
specialized roles for the OFC and LPFC in RL wherein 
the LPFC directs attention to relevant information while 
the OFC tracks values for relevant states (Schuck et al., 
2016; Wilson et al., 2014).   

Conclusion 
We leveraged behavioral modeling’s parameterization 
of latent cognitive processes and access to direct-brain 
recordings in humans to identify the neural architecture 
that supports the computational processes underlying 
adaptive decision-making. By integrating attention and 
RL, we address the complexity of value-based learning 
in multidimensional environments and relate this 
computational solution to a biologically plausible neural 
mechanism. Our behavioral results suggest humans 
selectively attend to reward-relevant information, thus 
maintaining efficient state representations to guide RL. 
Neural results reveal OFC and LPFC HGA encodes 
ΦEV. This encoding is biased by attention in the LPFC. 
Together our results provide neurocomputational 
correlates of flexible learning and decision-making.  

Figure 3: A. Electrodes (black) in OFC (orange; 144 electrodes) and LPFC (red; 124 electrodes).  B. Z-scored HGA 
power for low/high	 ΦEV in two exemplar patients (OFC=11 electrodes; LPFC=5 electrodes). Dashed line = 
choice/reward. C. Correlation between fitted attention weight and LPFC attention-modulated EV encoding reveals 
an LPFC-specific interaction of attention and value-learning (p < 0.001). 
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Significance

 We leverage rare chronic, invasive 
electrophysiology recordings 
while participants engage in 
loving-kindness meditation to 
demonstrate that meditation 
induces neural changes in beta 
and gamma activity in the 
amygdala and hippocampus of 
novice meditators. These results 
build on previous findings in 
experienced meditators and 
reveal meditation’s potential for 
noninvasive neuromodulation of 
brain activity associated with 
emotional regulation and mood 
disorders.
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Intracranial substrates of meditation- induced neuromodulation 
in the amygdala and hippocampus
Christina Mahera,b , Lea Tortoleroc, Soyeon Juna,b , Daniel D. Cumminsc , Adam Saadd , James Youngd,e, Lizbeth Nunez Martineza,b,  
Zachary Schulmanc , Lara Marcused,e, Allison Watersa,b,e,f , Helen S. Mayberga,b,c,d,e,f , Richard J. Davidsong , Fedor Panovc,e,  
and Ignacio Saeza,b,c,d,e,1

Edited by Michael Goldberg, Columbia University, New York, NY; received May 17, 2024; accepted December 2, 2024

Meditation is an accessible mental practice associated with emotional regulation and 
well- being. Loving- kindness meditation (LKM), a specific subtype of meditative prac-
tice, involves focusing one’s attention on thoughts of well- being for oneself and others. 
Meditation has been proven to be beneficial in a variety of settings, including therapeutic 
applications, but the neural activity underlying meditative practices and their positive 
effects are not well understood. It has been difficult to understand the contribution 
of deep limbic structures given the difficulty of studying neural activity directly in 
the human brain. Here, we leverage a unique patient population, epilepsy patients 
chronically implanted with responsive neurostimulation devices that allow chronic, 
invasive electrophysiology recording to investigate the physiological correlates of LKM 
in the amygdala and hippocampus of novice meditators. We find that LKM- associated 
changes in physiological activity were specific to periodic, but not aperiodic, features 
of neural activity. LKM was associated with an increase in γ (30 to 55 Hz) power and 
an alternation in the duration of β (13 to 30 Hz) and γ oscillatory bursts in both the 
amygdala and hippocampus, two regions associated with mood disorders. #ese findings 
reveal the nature of LKM- induced modulation of limbic activity in first- time meditators.

loving- kindness meditation | amygdala | hippocampus | intracranial electrophysiology

 Meditation is a set of mental techniques aimed at cultivating well-being, which require 
honing attentional skills related to emotional regulation ( 1       – 5 ). Numerous studies have 
proven that meditation can improve mental well-being in population-based settings ( 6 ), 
and potentially improve psychiatric diseases such as anxiety and depression ( 7 ). In concert 
with its clinical e!ects, meditation has been shown to change brain activity assessed 
through electrophysiology and functional neuroimaging ( 8 ,  9 ). Recent literature has 
parceled out primary categories of meditation, thus allowing rigorous scienti"c evaluation 
of speci"c practices ( 10 ). Loving-kindness meditation (LKM) is a technique within the 
constructive meditation family, in which practitioners actively focus their attention on 
cultivating positive thoughts of well-being for oneself and others. Preliminary work has 
suggested varying forms of meditation may share common e!ects on brain electrophysi-
ology ( 11 ): #is remains in important area for potential study. LKM may have therapeutic 
potential through the cultivation of positive emotion ( 12 ), but its underlying neural 
correlates are not well known, especially in deep brain areas involved in emotional 
regulation.

 Functional and structural MRI studies have demonstrated changes in both the amygdala 
and the hippocampus from continued LKM practice ( 13 ,  14 ). EEG studies, in addition, 
have shown increased γ activity during meditation ( 11 ,  14 ), including during LKM in 
experienced meditators ( 3 ). BOLD-fMRI signals have been shown to correlate with γ 
activity ( 15 ), suggesting that these processes are related. #erefore, we "rst hypothesized 
that LKM is associated with increased γ-band power and duration of γ-band oscillatory 
events in both the amygdala and hippocampus ( 3 ,  11 ,  14 ). Regulation in other frequency 
bands may accompany gamma changes: FA meditation is linked to decreased long-range 
neuronal synchrony within and between brain regions. β oscillations are associated with 
attentional shifts in nonhuman and human primates: When animals are paying attention 
to external stimuli, beta coherence is increased to support e!ective information-gathering 
( 16     – 19 ). During LKM, participants are turned to turn attention away from external 
stimuli and inward; therefore, we additionally hypothesized that LKM would be associated 
with decreased power or duration of β oscillatory events compared to baseline.

 Despite this theoretical basis for our hypotheses regarding LKM-associated changes in 
neuronal activity several additional questions remain. For example, whether LKM is discretely 
associated with oscillatory processes rather than an overall excitation/inhibition pro"le 
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modulation in associated neural circuits has not been determined. 
In addition, the involvement of other frequency bands (e.g., β = 12 
to 30 Hz) in limbic regions remains unclear, despite their role in 
emotional regulation and mood processes ( 20   – 22 ). Meditation has 
been associated with modulating local neuronal activity ( 2   – 4 ), 
measured by oscillatory power estimates ( 23 ), and decreased pop-
ulation synchrony within and between discrete regions ( 16 ,  17 ), 
measured by the duration of rhythmic, oscillatory episodes ( 24 ).

 #erefore, despite its importance, the anatomically precise and 
physiologically detailed neural basis of meditative practice remains 
to be determined, especially in deep brain areas that are inaccessible 
to non-invasive electrophysiological recording methods. #is, in 
turn, limits our understanding of the neural changes associated with 
the positive impacts of meditative practices and the development 
of generalizable insights that may be useful for therapeutic devel-
opment. Neurosurgical interventions for the management of epi-
lepsy allow recording from such areas in humans, including 
recording local "eld potentials (LFPs) capturing circuit activity 
directly via intracranial depth leads with great electrophysiological 
detail and signal to noise ratio ( 25 ), and providing a unique oppor-
tunity to study the neural basis of human behavior and thought. 
However, the most common settings for these invasive recordings, 
during drug-resistant epilepsy (DRE) patients’ hospitalization (e.g., 
in the Epilepsy Monitoring Unit), are not ideal for the study of 
meditation because of their perioperative nature and the lack of an 
adequate environment for calm meditative practices. In contrast, 
responsive neurostimulation (RNS) system (NeuroPace Inc.) allows 
chronic electrophysiologic brain recordings from implanted regions, 
frequently from the mesial temporal lobe structures of the hip-
pocampus and amygdala ( 26 ), during the patients’ daily life after 
surgery. #is allows combining intracranial recordings with the 
practice of meditation in a controlled setting providing adequate 
environmental conditions for the practice of meditation.

 Patients implanted with the RNS device can move around freely 
while continuous iEEG activity is recorded as LFPs. Recordings made 
with the RNS also o!er high-quality data from deep brain structures, 
implicated in emotional regulation, such as the mesial temporal lobe 
( 27 ). #is is a major advantage in contrast to meditation studies using 
scalp surface EEG, which have signi"cantly lower signal-to-noise ratio 
and do not allow the high simultaneous spatial and temporal resolu-
tion of RNS iEEG recordings ( 28 ). Patients implanted with the RNS 
are thus ideal candidates for investigating the neural correlates of 
naturalistic behavior, such as meditation ( 29 ,  30 ). In addition, DRE 
patients often su!er from psychiatric comorbidities including depres-
sion and anxiety ( 31 ), which provides an opportunity to study the 
relationship between intracranial activity and comorbid state, as well 
as the potential modulation during meditation.

 We therefore explored changes in neural oscillatory activity 
associated with LKM within the amygdala and hippocampus using 
iEEG in DRE patients chronically implemented with an RNS 
device. Our "ndings show that "rst-time LKM modulates 
frequency-speci"c power and duration of oscillatory events in the 
hippocampus and amygdala. #e selective nature of these "ndings 
in regard to the modulation of periodic, but not aperiodic, features 
of the neural signal reveals potential biomarkers by which LKM, 
a readily accessible therapeutic technique, noninvasively modu-
lates physiological processes associated with mood regulation 
( 20   – 22 ) even in "rst-time meditators. 

Results

 Participants included eight neurosurgical patients with DRE who 
were chronically implanted with the NeuroPace Responsive 
Neurostimulation System (RNS). Participants completed the 

present study in Mount Sinai’s Quantitative Biometric Laboratory 
(Q-Lab), designed to provide patients with a relaxing environment 
to receive therapeutic treatment free from typical distractors asso-
ciated with a hospital setting and therefore highly conducive to 
engaging in meditative practice ( Fig. 1B  ). Participants were self-
reported novice meditators prior to the present study and com-
pleted a 5-min audio-guided instruction (baseline) followed by 
10 min of audio-guided LKM (Materials and Methods ). To eval-
uate the LKM induction, participants were asked to self-report 
their experienced depth of meditation following the session using 
a 1 to 10 scale (higher score = deeper meditation). On average, 
participants reported a high degree of meditation (mean = 7.43, 
SD = 2.50; SI Appendix, Fig. S1 ).        

 We analyzed LFPs by creating bipolar derivations between the 
two most anterior contacts (typically located in the amygdala and 
anterior hippocampus) and the two most posterior contacts (the 
middle-posterior hippocampus). #erefore, we collected two bipo-
lar channels (one anterior pair and one posterior pair) per hemi-
sphere implanted with RNS. Six patients had bilateral RNS 
implantations, and two patients had unilateral RNS implantation 
(left hemisphere). #e electrode implant sites were determined 
solely based on clinical criteria, with the amygdala contacts being 
bipolar referenced to the anterior hippocampus. For readability, 
we refer to these bipolar recordings as “amygdala.” In contrast, the 
electrode pairs referred to as “hippocampus” represent hippocam-
pus–hippocampus bipolar derivatives, enabling us to distinguish 
activity originating speci"cally from the hippocampus from signals 
that include unique contributions from the amygdala. All partic-
ipants included in the present study had at least one contact in 
either the amygdala or hippocampus (count: amygdala = 14 elec-
trodes/13 bipolar channels; hippocampus = 36 electrodes/14 
bipolar channels;  Fig. 2A  ). Because of hardware limitations on the 
sampling rate of the recorded electrophysiological data (125 Hz 
maximum), we restricted our analyses to frequencies up to low 
gamma (55 Hz). Anatomical localization of electrodes was deter-
mined by coregistering high-resolution postoperative CT scans 
with preoperative MRI (Materials and Methods ). Although RNS 
implantation occurs in DRE patients’ presumptive seizure onset 
zone, the leads which are composed of 4 contacts typically span 
just over 30 mm of tissue (1.5 mm in length for each contact and 
10 mm between contact centroids). #is results in a proportion 
of data recorded from likely normative tissue ( 29 ,  30 ). To mitigate 
the in$uence of interictal noise in the data, we implemented a 
data preprocessing approach mentioned in previous publications 
( 32 ). Brie$y, following visual inspection of all channel data, we 
con"rmed the absence of any stimulation artifacts and eliminated 

A B

Fig. 1.   Behavioral methods. (A) Experimental design. Subjects (n = 8) 
completed a loving- kindness meditation (LKM) paradigm consisting of 5 min 
of audio- guided instruction (baseline) and 10 min of audio- guided LKM. (B) 
Experimental setting. The experimental paradigm was administered in Mount 
Sinai West’s Q- Lab, a dedicated, immersive research environment designed to 
provide participants with a restorative space to participate in this experiment.
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any data meeting clinical criterion for interictal discharge ( 33 ). 
#is resulted in discarding approximately 6% of the data. #e 
proportion of time across participants in which interictal activity 
was detected was not signi"cantly di!erent between conditions 
(baseline and meditation; P  > 0.05, Pearson’s chi-square 
goodness-of-"t test; SI Appendix, Fig. S2A ). #e proportion of 
omitted data from the entire experimental session ranged from 2 
to 16% across participants (SI Appendix, Fig. S2B ).         

LKM Was Not Accompanied by Changes in Aperiodic Neural 
Activity. We set out to identify whether meditation was 
accompanied by changes in neural activity by comparing LFP 
activity patterns between active control (learning about meditation) 
and LKM epochs. Given the largely temporally unresolved nature 
of these data, we chose to focus our analysis on the power pro"le 
throughout a single epoch during the meditation block, examining 
both aperiodic (1/f pro"le) and periodic (i.e., oscillatory) neural 
activity on each bipolar channel. We parameterized the aperiodic 
and periodic features of the power spectra using the ‘"tting 
oscillations and one over f ’ method (FOOOF; see Materials 
and Methods and Fig.  2B) (23). #e FOOOF model "t was 
performed for each channel’s data in each condition (baseline and 
meditation). #e aperiodic components include a knee parameter, 
which accounts for an often- observed bend in the 1/f pro"le, 
and o!set and exponent, which re$ect the y- intersect and rate 
of decay of the 1/f pro"le, respectively. Together, these aperiodic 
components capture broadband shifts in the 1/f pro"le often 
ascribed to changes in excitatory/inhibitory balance, di!erent 
and separate from oscillations in individual frequency bands. In 
addition, oscillatory components were estimated for prede"ned 
frequency bands (δ = 2- 4 Hz, θ = 4- 8 Hz, α = 8- 13 Hz, β = 13- 30 
Hz, γ = 30- 55 Hz; see Materials and Methods).

 We "rst sought out to identify whether acute LKM induced 
changes in the aperiodic features of the power spectra by compar-
ing knee frequency, o!set, and exponent separately between base-
line and LKM epochs ( Fig. 4 ). We did not "nd signi"cant 
di!erences between conditions in knee frequency, o!set, or expo-
nent in either the amygdala or hippocampus (all P  > 0.05, 
two-sided paired-samples Wilcoxon signed rank test;  Fig. 3 ), sug-
gesting that meditation is not accompanied by general changes in 
the excitatory/inhibitory pro"le of either amygdala or hippocam-
pus. Further, we found no signi"cant di!erences in aperiodic 

components between the amygdala and hippocampus (all P  > 0.05, 
two-sided Wilcoxon signed rank test; SI Appendix, Fig. S3 ).          

LKM Was Not Accompanied by Changes in the Proportion of 
Electrodes Showing Oscillatory Activity. Next, we evaluated 
whether LKM was accompanied by changes in oscillatory neural 
activity by examining power across frequencies in baseline and 
meditation conditions. We considered a signi"cant oscillation to 
be present if at least one peak within prede"ned frequency bins 
(δ = 2- 4 Hz, θ = 4- 8 Hz, α = 8- 13 Hz, β = 13- 30 Hz, γ = 30- 55 
Hz) was detected by the FOOOF model "t. If no peak was found 
within a given frequency range for a channel, we considered the 
channel to not contain an oscillation in that band. #erefore, 
we started by quantifying the proportion of channels containing 
active oscillations across conditions. We observed di!erences in 
the proportion of active channels across frequencies between 
conditions in both amygdala and hippocampus, with higher 
frequencies containing a larger proportion of active channels 
than lower frequencies (Fig. 4). #e lowest proportion of active 
electrodes was in δ in both amygdala (30.8%) and hippocampus 
(35.7%); the highest was in β and γ in both regions (100%). 
However, we did not "nd signi"cant di!erences in the proportion 
of active electrodes between conditions in any frequency bands (all 
P > 0.05, Fisher’s exact test). #erefore, LKM was not associated 
with an increase in the proportion of channels showing signi"cant 
oscillations. #ese data indicate that our ability to detect signi"cant 
oscillations was strongly frequency dependent, and that there was 
signi"cant β and γ oscillatory activity in both baseline and in 
meditation conditions in the amygdala and hippocampus.

LKM Was Associated with an Increase in γ Power. To further 
investigate whether LKM modulated oscillatory activity, we 
compared the amplitude, or power, of detected oscillations 
between conditions in both regions (Fig.  5). To investigate 
between- condition di!erences in oscillatory power, we only 
considered channels in which at least one peak was detected in each 
frequency band (i.e., containing signi"cant oscillatory activity). If 
more than one peak was found within a given frequency range, 
the average power of all detected peaks within the frequency 
band was computed to determine an average power score. We 
observed a signi"cant increase in γ power during LKM in both 
the amygdala (P < 0.01, one- sided paired- samples Wilcoxon 

A B

Fig. 2.   Neural methods. (A) Anatomical reconstruction showing the hippocampal and amygdala location of RNS contacts. Depicted is the placement of 50 
NeuroPace RNS electrodes in the amygdala (blue) and hippocampus (red) across eight participants. Each black dot corresponds to one electrode (amygdala = 
14 electrodes/13 bipolar channels; hippocampus = 36 electrodes/14 bipolar channels). (B) FOOOF approach. We characterized LFP activity from bipolar channels 
recorded from depth electrodes in the amygdala and hippocampus. We used the FOOOF approach to separately characterize aperiodic (i.e., 1/f background 
activity) from oscillatory neural activity. Depicted is an example power spectrum from one hippocampal channel (gray trace) overlaid by the FOOOF fitted model 
(red trace) parameterized to extract aperiodic (blue trace) and periodic (green trace) spectral features between 2 and 55 Hz. The aperiodic components are 
characterized by the offset, knee, and exponent. Periodic components are assigned to a canonical frequency band (δ = 2- 4 Hz, θ = 4- 8 Hz, α = 8- 13 Hz, β = 13- 30 Hz,  
γ = 30- 55 Hz) depending on their center frequency, and their power and bandwidth estimated.
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signed rank test, Fig. 5A). and hippocampus (P < 0.001, one- sided 
paired- samples Wilcoxon signed rank test, Fig. 5B). We did not 
observe concomitant changes in β (P > 0.05, one- sided paired- 
samples Wilcoxon signed rank test, Fig. 5) or any other frequency 
bands (all P > 0.05, two- sided paired- samples Wilcoxon signed 
rank test, Fig. 5), indicating that this modulation was speci"c to 
the γ frequency band. Overall, these results reveal that LKM is 
accompanied by changes in oscillatory power in active channels, but 
not an increase in the proportion of active channels. Furthermore, 
these changes are speci"c to high- frequency activity (γ) and not 
present in lower frequencies. We did not "nd di!erences in baseline 
oscillatory power or the di!erence in oscillatory power from 
baseline to meditation between the amygdala and hippocampus 
(all P > 0.05, two- sided Wilcoxon signed rank test; SI Appendix, 
Figs. S4A and S5A).

 To examine the signi"cance of power modulations at the subject 
level, we performed subject-level analyses of power di!erences by 
leveraging the high temporal resolution of the iEEG data. We 
focused our model-free analysis on the beta and gamma frequency 
bands, as our FOOOF model "tting con"rmed the presence of 
both beta and gamma oscillations across all channels in both base-
line and LKM conditions. Brie$y, we estimated power for 1-s 
neural recording segments across all channels for each subject. 

LKM segments were z-scored relative to baseline segments, pro-
viding a normalized measure of LKM-induced changes in each 
frequency band. As anticipated, we observed a signi"cant increase 
in gamma power during LKM in both the amygdala ( Fig. 6A  ) and 
hippocampus ( Fig. 6A  ) for most subjects (amygdala: 6/8 partici-
pants; 75%; hippocampus: 6/7 participants; 86%). In contrast, 
there was no signi"cant di!erence in beta power during LKM com-
pared to baseline in either region for most subjects (both P  > 0.05, 
 Fig. 6B  ). #ese results align with the group-level, model-based 
"ndings, further supporting a signi"cant LKM-associated increase 
in gamma power, and provide limited evidence for modulations in 
beta power in some, but not all, patients.          

LKM Was Accompanied by an Alteration in Duration of β and γ 
Bursts. #e FOOOF method allowed us to investigate aperiodic 
and periodic components of brain activity but does not o!er a way 
to quantify quick bursts of neural activity which may be important 
to facilitate switches in cognitive states (e.g., from baseline to 
LKM). To investigate this possibility, we applied the extended 
Better Oscillation detection (eBOSC) method (24, 34), to 
investigate how meditation modulated the duration of oscillations 
across frequency bands (Materials and Methods). eBOSC allows 
us to detect temporal windows with signi"cant frequency- speci"c 
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Fig. 3.   No difference in aperiodic neural components between baseline and 
meditation epochs. The aperiodic components of FOOOF model fit (knee 
frequency, offset, and exponent) was extracted and compared between 
conditions (FA meditation and baseline). (A) No differences in FOOOF 
aperiodic parameters in amygdala channels. No significant differences in knee 
frequency, offset, or exponent of FOOOF model fit for amygdala channels  
(n = 13 bipolar channels) were observed between conditions (all P > 0.05, Two- 
sided paired sample Wilcoxon signed- rank test). (B) No differences in FOOOF 
aperiodic parameters in hippocampus channels. No significant differences 
in knee frequency, offset, or exponent of FOOOF model fit for hippocampus 
channels (n = 14 bipolar channels) were observed between conditions (all  
P > 0.05, Two- sided paired sample Wilcoxon signed- rank test).
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Fig. 4.   Proportion of channels showing neural oscillations varied across 
frequency bands. Plotted is the proportion of channels in which an oscillation 
was detected during baseline and meditation epochs in each frequency band 
(δ = 2- 4 Hz, θ = 4- 8 Hz, α = 8- 13 Hz, β = 13- 30 Hz, γ = 30- 55 Hz) according 
to FOOOF power spectrum model fit. (A) Proportion of amygdala channels 
showing significant oscillatory activity across frequencies. The proportion of 
channels showing significant modulation varied between ~30% in δ (2 to 4 Hz) 
and 100% in γ (30 to 55 Hz), with greater proportions for higher frequencies. 
There were no differences in the proportion of amygdala channels (n = 13 
bipolar channels) in which oscillations were detected between baseline (light 
blue) and meditation (dark blue) epochs (all P > 0.05, Fisher’s exact test). (B) 
Proportion of hippocampal channels showing significant oscillatory activity 
across frequencies. The pattern of activation was like that observed in the 
amygdala, with the proportion of channels ranging between ~30% in δ (2 
to 4 Hz) and 100% in γ (30 to 55 Hz), with greater proportions for higher 
frequencies. There were no differences in the proportion of hippocampal 
channels (n = 14 bipolar channels) in which oscillations were detected between 
baseline (light blue) and meditation (dark blue) epochs (all P > 0.05, Fisher’s 
exact test).
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oscillations that surpass power and duration thresholds while 
accounting for the background 1/f pro"le of the neural signal 
(24). Further, recent work has implemented this method with 
hippocampal iEEG data collected using the RNS device, allowing 
us to compare our "ndings with previously published iEEG work 
(30). Using eBOSC, we calculated the proportion of time within 
a given experimental condition (baseline or LKM) in which a 
particular oscillation was detected. We averaged these proportions 
for each frequency in each of our prede"ned frequency bands 
and compared between conditions to identify whether LKM 
induced changes in the duration of oscillatory events (Fig. 7). 
We found that LKM was associated with a signi"cant decrease 
in the duration of β oscillations in both the amygdala (P < 0.05, 
one- sided paired- samples Wilcoxon signed rank test, Fig.  7A) 
and hippocampus (P < 0.05, one- sided paired- samples Wilcoxon 
signed rank test, Fig. 7B). Further, we found a signi"cant increase 
in the duration of γ oscillations during LKM in the amygdala 
(P < 0.01, one- sided paired- samples Wilcoxon signed rank test, 
Fig.  7A). Additionally, the amygdala displayed a signi"cantly 
greater increase in the duration of γ oscillations during meditation 
compared to the hippocampus (P < 0.05, one- sided Wilcoxon 
signed rank test, SI  Appendix, Fig.  S5B; all other frequency 
bands P > 0.05). Overall, these results demonstrate a decrease 
in the amount of β events during meditation in both amygdala 
and hippocampus, and an increase in γ events in the amygdala, 
suggesting an involvement of fast oscillatory events in meditative 
states. We did not "nd di!erences in baseline oscillatory duration 

between the amygdala and hippocampus (all P > 0.05, two- sided 
Wilcoxon signed rank test; SI Appendix, Figs. S4B and S5B).

Discussion

 #is study leveraged unique access to chronic ambulatory iEEG 
recordings in the amygdala and hippocampus during LKM. We 
directly examined the nature of neurophysiological activity during 
LKM in the amygdala and hippocampus, "nding primary results 
of increased γ oscillations and decreased β duration during LKM. 
Further, changes in neural dynamics with meditation occurred in 
oscillatory activity, rather than in aperiodic neural activity. 
Research on the e!ects of meditation on neural dynamics to date 
has been limited to fMRI and scalp EEG, due to rare access to 
iEEG in real-world settings. While such approaches have advanced 
the "eld of meditation, iEEG research can augment such data with 
increased spatial and temporal resolution.

 Meditative practices have existed for millennia in di!erent tra-
ditions ( 35 ) and allow humans to cultivate fundamental states of 
focus and emotional regulation ( 36 ). Meditation, perhaps inde-
pendent of practice type, induces scalp EEG increases in γ activity 
( 11 ). In addition, meditation induces changes in BOLD-fMRI 
signal in the hippocampus and amygdala ( 13 ,  37 ), which could 
correlate with changes in γ oscillatory activity ( 15 ). Our study 
directly addresses the nature of intracranial electrophysiology 
within the hippocampus and amygdala during meditation. Our 
focus on LKM comes from previous research that connects this 
emotionally laden contemplative practice to the amygdala ( 13 ). 
LKM, utilized in this study, stresses "nding joy and sharing it with 
others ( 10 ). Such constructive contemplative practices have been 
shown to induce positive emotions, which may lead to an increased 
sense of purpose and meaning in life ( 38 ). Such training has also 
been shown to chronically modulate the amygdala, hence of spe-
ci"c interest in our cohort where contacts were situated in the 
basolateral amygdala in all cases ( 13 ). Yet, no experiments to date 
have attempted to record such changes in novice meditators 
acutely and intracranially. #ese "ndings complement the earlier 
results on increased γ oscillations in LKM practices in long-term 
meditators by showing speci"c increases in these fast oscillations 
in novice meditators when directly examining the amygdala and 
hippocampus with iEEG. 

Amygdala and Hippocampus γ Power Increases During LKM. By 
leveraging the spatiotemporal resolution a!orded by iEEG, our 
results build on prior research on γ power increases associated with 
long- term LKM practice (3, 11, 39, 40) extending these "ndings 
to "rst- time meditators and providing insights into the nature 
of neural changes associated with meditation in an anatomically 
precise way. We observed an increase in amygdala and hippocampus 
γ power (Fig. 5), whose correlation to fMRI- BOLD signal is well 
established (15), suggesting LKM induces heightened activation of 
local neuronal ensembles within the amygdala and hippocampus. 
#is meditation- induced neural modulation may be related to the 
known role in processing of emotional information in the amygdala 
and hippocampus (41), and possibly with related mental processes 
such as memory and attention. During LKM, participants are 
encouraged to actively retrieve positive autobiographical memories 
during LKM which induces amygdala and hippocampus activation 
(42). #e hippocampus plays a critical role emotional regulation 
and attention (43, 44) alongside its fundamental roles memory 
consolidation and retrieval (45, 46), suggesting hippocampal 
activation may be related to the memory aspects of the meditative 
task. #e amygdala, in turn, can direct attention toward emotionally 
signi"cant stimuli (13, 45, 47), serving a critical function in the 

Fig. 5.   Group- level increased γ oscillatory power in meditation compared 
to baseline. We examined power modulation across conditions (baseline 
versus LKM) by averaging spectral power estimates (the periodic component 
of FOOOF model fit) within frequency bands (δ = 2- 4, θ = 4- 8, α = 8- 13, β = 13- 30, 
γ = 30- 55) and compared across conditions. For this analysis, we employed 
only the subset of channels that showed significant oscillations in both 
conditions, which varied across frequency bands. (A) Increased γ oscillatory 
power in amygdala electrodes during meditation. We observed a significant 
increase in amygdala γ power (30 to 55 Hz) during LKM compared to baseline  
(P < 0.01, one- sided paired- samples Wilcoxon signed rank test; all other 
frequency bands P > 0.05). (B) Increased γ oscillatory power in hippocampal 
channels during meditation. As in the amygdala channels, we observed a 
significant increase in hippocampus γ power (30 to 55 Hz) during LKM 
compared to baseline (P < 0.001, one- sided paired- samples Wilcoxon signed 
rank test; all other frequency bands P > 0.05).
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bottom–up processing of emotionally relevant information (48–
50). We further identi"ed an increase in the duration of γ oscillatory 
events during LKM compared to baseline in the amygdala, but not 
hippocampus (Fig. 7). #is may re$ect the speci"c physiological 
demands of LKM, wherein the hippocampus exhibits more 
transient γ bursts associated with memory retrieval (51) while the 
amygdala exhibits more sustained, rhythmic γ activity to support 
emotional processing (52).

Amygdala and Hippocampus β Oscillatory Duration Decreases 
During LKM. β oscillations re$ect rhythmic phase- locked activity 
and are thought to facilitate long- range information exchange 
via cross- regional synchrony. #e synchrony a!orded by ongoing 
β oscillations poises neural ensembles to quickly reorganize and 
integrate incoming information. In human and nonhuman 
primates, synchrony in lower- frequency (i.e., β) oscillations is 
thought to modulate attention switches (18, 53). #is physiological 
mechanism provides an attentional spotlight that facilitates 
e!ective information- gathering from the environment (19). #is 
a!ordance is advantageous in circumstances which require real- 
time monitoring and adapting to one’s environment. In contrast, 
one seeks to reduce the in$uence of external distractions during 
LKM. #erefore, our present "ndings of decreased β oscillatory 
duration during LKM compared to baseline support the notion 
that β oscillations are a physiological mechanism for long- range 
temporal synchrony that regulates selective attention in service 
of LKM. Transient β bursts, instead of sustained rhythmic 
oscillations, facilitate cognitive processes through functional 

inhibition (51). β bursts dictate the spatial and temporal basis of 
activation relevant for memory-  and attention- related processing, 
while gamma power re$ects the processing itself (54). Increased 
cortical β oscillations have been correlated with negative mood 
disorders (22, 53, 55). Decreased β oscillations with LKM may also 
represent a shift from negative emotional states, in turn for more 
positively salient γ oscillations at the network level. Additionally, 
given the role of β oscillations in premotor preparation and the 
fact that LKM can be conceptualized as being action- oriented 
(56–59), it is possible that our observed β modulation re$ects a 
motor plan in its preparatory stages. #ese group- level changes 
in beta oscillatory duration were associated in some patients with 
modulations in beta power (Fig. 6), suggesting that interpatient 
heterogeneity may play a role in shaping these neural responses.

Meditation Does Not Affect Aperiodic Activity or Differentially 
Impact the Hippocampus versus Amygdala. Our "nding that 
meditation was not accompanied by changes in aperiodic neural 
activity suggests that any LKM practice- induced neural $uctuations 
are speci"cally related to oscillatory events, not other physiological 
processes (Fig. 3). We did not "nd di!erences in any oscillatory 
metric (periodic/aperiodic FOOOF metrics or eBOSC) between 
the amygdala and hippocampus. #is may indicate they are 
similarly modulated, with an important caveat that our amygdala 
contacts are bipolar referenced to the head of the hippocampus. 
Such confounds may be overcome in future experiments with 
adjustments of the recording paradigms of the RNS to monopolar, 
yet, at this time are beyond the scope of this paper.

Fig. 6.   Subject- level increased γ oscillatory power in meditation compared to baseline. We analyzed power modulation within subjects by dividing the LKM session 
into 1- s epochs and performing frequency decomposition to estimate γ and β power for each epoch. These epochs were then z- scored against the mean and 
SD of γ and β power during the baseline period (each point represents one 1 s epoch). A positive z- score indicates an increase in power during the LKM session 
relative to baseline. (A) Generalized gamma- band power increase in the amygdala and hippocampus. Most participants (n = 6/8, 75%) exhibited significantly 
greater amygdala γ power during meditation compared to baseline [one- sided one- sample Wilcoxon signed rank test; participant (median, P- value) = 1 (0.14,  
P < 0.001), 2 (0.14, P < 0.001), 3 (0.13, P < 0.001), 4 (−0.02, P < 0.001), 5 (0.18, P < 0.001), 6 (0.15, P < 0.001), 7 (−0.02, P > 0.05), 8 (0.12, P < 0.001)]. Most participants 
(n = 6/7, 86%) exhibited significantly greater hippocampus γ power during meditation compared to baseline [one- sided one- sample Wilcoxon signed rank test; 
participant (median, P- value) = 1 (0.13, P > 0.05), 2 (0.12, P > 0.05), 3 (0.12, P > 0.05), 4 (−0.01, P > 0.05), 5 (0.14, P > 0.05), 6 (0.13, P > 0.05), 8 (0.13, P > 0.05)]. (B) 
Beta- band power modulation in the amygdala and hippocampus in a subset of patients. Only a minority of participants exhibit significantly different β power 
during meditation compared to baseline in the amygdala [3/8 patients; two- sided one- sample Wilcoxon signed rank test; participant (median, P- value) = 1 (−0.01, 
P < 0.001), 2 (−0.02, P > 0.05), 3(−0.01, P > 0.05), 4(0.02, P < 0.001), 5(0.04, P < 0.001), 6(−0.05, P > 0.05), 7(−0.01, P > 0.05), 8(−0.04, P > 0.05)] or hippocampus [two- 
sided one- sample Wilcoxon signed rank test; participant (median, P- value) = 1 (−0.01, P < 0.01), 2 (−0.02, P > 0.05), 3 (0.01, P < 0.001), 4(0.02, P < 0.001), 5(0.01, 
P < 0.05), 6(−0.04, P > 0.05), 8(−0.04, P > 0.05)].
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Naturalistic Study on the Neural Correlates of Meditation. #is 
work on the neural correlates of meditation using RNS has a 
multitude of advantages over other approaches. Mainly, the RNS 
allows detailed spatiotemporal study of deep brain structures 
in a naturalistic setting. While work from fMRI and other 
neuroimaging studies have gleaned important "ndings, they are 
limited in their temporal resolution. Clinically relevant "ndings 
from these studies, such as biofeedback for treatment of negative 
emotions (45), are di&cult outside of the naturalistic setting, as 
with RNS. Our work builds on the uses of RNS to study the neural 
basis of human brain function in the naturalistic setting, which 
has been implemented for tasks ranging from spatial navigation 
(30, 60), to speech (61).

Study Limitations. Our experimental design results in several 
limitations of this study. First, the technical limitations of the 
RNS device (which is limited to a 250 Hz sampling rate) imposed 
an upper limit on the frequency bands that could be resolved, and 
therefore we could not fully estimate the e!ects of meditation 
on broadband high- frequency activity (typically 70 to 200 Hz), 
a marker of local activation (32, 62). We were, however, able 
to estimate gamma activity (30 to 55 Hz), which also acts as a 
proxy for local cortical activation (63, 64). Second, because of 
the limited time available for patient testing, the experimental 
paradigm did not include a post- meditation active control 
period, limiting our ability to test for postmeditation baseline 
changes as reported in previous studies (3). Similarly, the one- 
shot design limits our ability to draw conclusions regarding 

the chronic e!ects of meditation practice. Our ability to draw 
conclusions regarding the generalizability of "ndings is limited 
by experimental constraints with a clinical sample as baseline 
period could only consist of a single session at the start of the 
meditation phase, during which participants listened to audio 
instructions about meditation, and we did not include multiple 
baseline periods for further comparison. Whereas it is possible 
that the observed neuromodulation re$ects the in$uence of 
factors beyond LKM, the main di!erence between the active 
control baseline and the LKM period was the meditation practice 
itself. Participants maintained the same seated position, received 
the same quality of audio prompts, and were exposed to the 
same environmental stimuli in both conditions. Future studies 
could bene"t from incorporating multiple control sessions, a 
more robust baseline period, counterbalanced order of baseline 
and meditation periods, and additional forms of meditation or 
relaxation practice to better isolate the speci"c contributions 
of LKM to the observed e!ects. #ird, by including the knee 
parameter in our FOOOF model "t, we avoid assuming the 
aperiodic component of the power spectra maintain a single 
1/f- like characteristic, as this assumption is often violated 
across broad frequency ranges (~greater than 40 Hz). While 
providing a better "t to the data, this model "tting choice may 
exhibit a bias against lower frequencies, potentially explaining 
the disproportionate detection of peaks at higher frequencies 
compared to lower ones in the present analysis. Additionally, 
the lack of a relationship between self- reported depth of 
meditation and neurophysiological metrics raises the question 
of whether participants genuinely engaged in meditation, and the 
challenges of estimating internal states in a non- intrusive way. 
More generally, it is possible that our observed neural changes 
re$ected generalized changes in states of arousal or a!ect. #e 
addition of neurophysiological measures such as heart rate or 
skin conductance, would help relate amygdala and hippocampal 
activation to less invasive physiological metrics and help determine 
the speci"city of neural activation versus more general metrics, 
e.g., arousal. Finally, because of the di&culties of recruiting RNS 
patients, our study was necessarily limited to a small patient 
sample (n = 8). #is is a common limitation of intracranial 
studies in general, and RNS studies in particular, which often 
have similar or, frequently, smaller number of patients compared 
to our study (29, 65). In addition, this concern is alleviated by 
the signi"cant homogeneity in electrode placement, which limits 
cross- patient anatomical variability compared to other invasive 
studies (e.g., sEEG) and by the great signal- to- noise ratio of 
intracranial recordings, which allowed us to carry out group- level 
inferences (e.g., Fig. 5).

Study Strengths. #is study has several key strengths. First, the 
use of intracranial recordings o!ers high spatial and temporal 
precision, allowing for direct measurement of brain activity in 
subcortical regions, such as the amygdala and hippocampus, which 
are known for their roles in emotion regulation and memory. 
#ese processes are thought to be triggered by LKM practice but 
speci"c neuronal activation of these regions during LKM are 
di&cult to measure with non- invasive methods. Additionally, 
the RNS system enables data collection from fully ambulatory 
participants, allowing the study to take place in a naturalistic 
setting. #is improves the study’s ecological validity by recording 
direct brain activity while participants behave in conditions that 
closely resemble a real- world meditation setting. Finally, the 
statistical methods used in this study account for both periodic 
and aperiodic neural activity, o!ering a detailed and mechanistic 
understanding of how LKM a!ects the brain.

Fig. 7.   Modulation of oscillatory duration across meditation states. We used 
a rhythm detection method (eBOSC) to determine the duration of rhythmic, 
oscillatory activity. Estimates of oscillatory duration were averaged within 
frequency bins (δ = 2- 4, θ = 4- 8, α = 8- 13, β = 13- 30, γ = 30- 55) and compared 
between conditions. (A) Amygdala channels showed a decrease in β and an 
increase in γ oscillation duration. The duration of amygdala β- range oscillatory 
activity during LKM decreased compared to baseline (P < 0.05, one- sided 
paired- samples Wilcoxon signed rank test), and the duration of amygdala 
γ- range oscillatory activity during LKM increased compared to baseline  
(P < 0.01, one- sided paired- samples Wilcoxon signed rank test; all other 
frequency bands P > 0.05). (B) Hippocampus channels showed a decrease 
in β oscillation duration. The duration of hippocampal β- range oscillatory 
activity during LKM decreased compared to baseline (P < 0.05, one- sided 
paired- samples Wilcoxon signed rank test; all other frequency bands P > 0.05).
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Future Directions. #ese results are the "rst to document acute 
intracranial electrophysiology changes with LKM. Speci"cally, we 
see an increase in γ oscillations and a decrease in β burst duration 
in the amygdala and hippocampus with LKM. While we observe 
acute changes in amygdala and hippocampal electrophysiology 
during LKM, we did not assess long- term changes that may occur 
with LKM practice. #e meditation literature has de"ned “state 
changes” as temporary modulations of mind (and implicitly brain 
function) that occur with meditation, versus trait changes as long- 
term, enduring e!ects of meditation on the mind (and thus brain) 
(65). Our research documents brain signals that may contribute 
to the acute state changes of LKM but does not explore long- 
term brain changes that may underlie traits unique to long- term 
meditators. Yet, the RNS system enables long- term tracking of 
electrophysiology, which may be applied over the course of a novice 
meditator’s practice as they journey to a higher level of expertise. 
Further, alternative forms of meditation, such as mindfulness, may 
be similarly assessed to determine the varying e!ects of meditation 
practice on brain state and trait changes. #e work presented 
here focuses on hippocampal and amygdala electrophysiology, as 
these are the typical targets of RNS implantation for epilepsy. 
Complementary studies on intracranial EEG recordings in 
patients implanted with a wider range of contact locations for 
seizure localization (sEEG) may provide additional insight into 
the circuit- level activity changes associated with meditation. 
We feel both approaches are complementary and will improve 
future investigations via a feedback loop. #ere thus remains an 
exciting opportunity for exploration on how meditation practice 
exerts acute state changes and long- term trait changes through 
modulation of intracranial electrophysiology in the human brain.

Summary. Our "ndings reveal increased hippocampal and 
amygdala γ power associated with LKM, and amygdala- speci"c 
increases in γ oscillation duration. Further, we identi"ed a global 
decrease in amygdala and hippocampus β oscillatory duration 
during LKM. #ese "ndings provide anatomically localized 
and neurophysiologically detailed for the role of these regions 
in meditation and suggest an association with their known roles 
in memory and emotional regulation processes. In addition, 
they con"rm the potential of "rst- time LKM practice to induce 
transient physiological alterations in brain regions whose 
maladaptive functioning is implicated in mental health disorders. 
By identifying physiological mechanisms that are amenable to 
noninvasive neuromodulation via LKM, we highlight LKM’s 
potential as a targeted therapeutic intervention.

Materials and Methods

RNS Participants. Eight DRE patients participated in the present study (n = 3  
female, mean age = 44.75 ± 7.67 y). All participants had been previously 
implanted with the NeuroPace RNS System to treat DRE. Electrode placement was 
solely determined by clinical criterion. A structured clinical interview was conducted 
based on the NIH Common Data Elements Battery for Epilepsy Patients prior to 
participation. Participants provided informed consent for participating in the pres-
ent study which was approved by the Mount Sinai Institutional Review Board.

RNS Data Acquisition. RNS is an FDA- approved chronically implanted invasive 
intervention to treat patients with DRE by continuously monitoring for abnormal 
electrical activity and delivering electrical stimulation to circumvent seizure onset 
(Fig. 1A). RNS devices provide access to intracranial LFP activity from the stim-
ulating electrode in postsurgical, chronic conditions, which provides an oppor-
tunity to record intracranial LFP data from deep brain regions. iEEG storage in 
the RNS Neurostimulator was manually triggered by the experimenter to mark 
the start and end of the experimental session. During the experimental session, 
the RNS Neurostimulator continuously recorded iEEG activity in two (unilateral 

implantation) or four (bilateral implantation) bipolar channels depending on each 
patient’s electrode placement. Bipolar derivations were carried out between the 
two most anterior and the two most posterior channels, typically implanted along 
the anterior–posterior axis of the amygdala- hippocampus (Fig. 2A). iEEG activity 
was continuously recorded from all available bipolar channels across two depth 
electrode leads in each patient at a sampling frequency of 250 Hz.

Behavioral Task. The experimental session consisted of a 15- min audio- guided 
meditation paradigm. All experimental sessions occurred in Mount Sinai’s 
Quantitative Biometrics Laboratory (Q- Lab) which was designed to emulate 
Japanese teahouses and gardens, affording patients a restorative environment 
for participation (Fig. 1B). The present study’s LKM paradigm was an audio- only 
prerecording to ensure standardization across participants. The recording uti-
lized material from the Healthy Minds Program and Mindfulness- Based Stress 
Reduction course through Palouse Mindfulness. Both programs provide open- 
source, empirically evidenced LKM resources (10). The recording was performed 
by a neuropsychologist with specialist training Acceptance and Commitment 
Therapy, a psychological intervention that utilizes mindfulness, and experience 
in facilitating meditation sessions for epilepsy patients. An experimenter was 
present for each experimental session to monitor potential seizure activity. The 
meditation paradigm began with 5 min of audio- guided instruction during which 
participants passively listened to discussion of meditation’s objective and were 
guided in best practices for engaging effectively in LKM. This period was con-
sidered baseline in further analysis. Instruction was followed by 10 min of LKM 
during which participants were guided to wish well to oneself and then others 
by first imagining that “you are filled and overflowing with warmth and love” 
and then repeating phrases silently, such as “may you live with ease, may you be 
happy, may you be free from pain.” The meditation builds from receiving loving 
kindness directed at oneself followed by sending loving kindness to loved ones, 
neutral people, and all living beings (see SI Appendix for complete transcript). 
Through active attention regulation, practitioners to exert top–down attention on 
a target object while disengaging attentional resources from irrelevant objects 
(66). The goal- directed modulation of attention and its neural underpinnings has 
been well characterized in humans (67). Until now, significant technical limita-
tions have prevented the direct recording of neural activity with the spatial and 
temporal resolution necessary to potentially detect neurophysiological fluctua-
tions induced by meditative states, especially in novice meditators. RNS patients 
present a unique opportunity to record intracranial electrophysiology (iEEG) in 
freely behaving, postoperative humans. For these reasons, we chose to focus the 
present iEEG study on LKM. Participants remained seated for the duration of the 
experimental session. For analysis purposes, the first 2 min of instruction were 
selected as the baseline epoch, and 2 min in the middle of meditation during each 
patient’s experimental session were selected as the meditation epoch for compar-
ison. These conditions were referred to as baseline and meditation, respectively.

Analysis. Analyses were performed with custom MATLAB (electrode localization), 
Python (iEEG preprocessing/quantification, visualization, and statistics), and R 
(statistics and visualization).

Electrode Localization and iEEG Preprocessing. Electrode localization was 
performed with MATLAB LeGUI. We coregistered each participant’s postoperative 
CT image to their preoperative whole brain MRI. All electrodes determined to be 
in the amygdala or hippocampus following localization were included in further 
analysis (amygdala: electrode, bipolar channels; hippocampus: electrodes, bipo-
lar channels). The anatomical location of each electrode was determined using 
the Yale Brain Atlas (68), a whole- brain atlas of the human cortex, hippocampus, 
amygdala created using 3,866 electrodes across 25 iEEG subjects, and verified 
through visual examination. Epileptic or noisy activity was manually removed 
following visual inspection of each channel similar to previously published 
methods (32). Similar to previous results (29, 30, 32), we excluded ~6% of the 
data from further analyses due to the presence of epileptic or noisy activity. The 
proportion of excluded data across amygdala and hippocampus channels was not 
significantly different between conditions (P > 0.05 for all channels, Pearson’s 
chi- square goodness- of- fit test).

Quantifying Oscillatory Prevalence, Power, and Duration. We computed 
the power spectral density (PSD) of the iEEG signal between 0 and 125 Hz using 
the Welch method (2 s- segments, 12.4% overlap).D
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Fitting Oscillations and 1/f (FOOOF) Method. PSDs for each channel across 
conditions were analyzed using the FOOOF method (23) which parameterizes 
aperiodic and periodic features of the power spectrum allowing us to determine 
whether FA meditation induces true oscillatory changes in neural activity or 
impacts other neurophysiological processes. Consistent with prior work leverag-
ing the FOOOF method to assess human electrophysiological data, we visually 
inspected each PSD to determine the appropriate method of aperiodic fitting 
(linear versus nonlinear). Across most channels (n = 26), PSDs depicted a bend in 
higher frequencies (>40 Hz), therefore spectral parameterization with FOOOF was 
performing using a knee to appropriately capture these power spectra’s nonlinear 
dynamics (Fig. 2B). This was consistent with existing human electrophysiology 
literature, especially when evaluating higher frequency domains (>40 Hz). In 
one channel, a bend was not observed in the PSD. Spectral parameterization 
for this channel was performed without a knee. Using fitted exponent and knee 
parameters for each channel, we calculated the knee frequency to evaluate group 
differences. The knee frequency reflects the frequency in which the aperiodic 
slope of the PSD changes. Further, peak width was restricted to 1 to 8 Hz to 
minimize overfitting. Model fit was evaluated according to R- squared and error 
metrics (Amygdala: median R2(median error) = baseline (0.99(0.03)), medita-
tion (0.99(0.04)); Hippocampus: baseline (0.99(0.03)), meditation (0.99(0.03))). 
R- squared for both regions was in accordance with existing literature (68) and 
not significantly different between conditions suggesting good fit for both the 
amygdala (P > 0.05, two- sided paired- samples Wilcoxon signed rank test) and 
hippocampus (P > 0.05, two- sided paired- samples Wilcoxon signed rank test).

Using the FOOOF method, we fit the aperiodic (offset, knee, exponent) and 
periodic (power, bandwidth, center frequency) components of each iEEG channel’s 
power spectrum between 2 and 55 Hz for each condition (Fig. 2B). This allowed 
us to separate true oscillatory features of the PSD versus background (1/f) neural 
activity, characterized by the aperiodic components (69). The aperiodic offset, or 
broadband intercept, reflects the up/down translation of the spectrum while the 
aperiodic exponent reflects the overall curve of the aperiodic component with a 
smaller exponent reflecting a shallower power spectrum (Fig. 2B). Oscillations are 
reflected as narrowband peaks in power above the aperiodic component of the PSD. 
Parameterizing both the periodic and aperiodic components of the PSD allows us to 
compare differences in the presence/absence of oscillations at individual frequency 
bands between regions and conditions, as well as the periodic features of those 
oscillations while accounting for the background 1/f aperiodic profile which reflects 
other physiological processes. Periodic components of the power spectra refer to 
activity with a characteristic frequency. Of interest for the present study is frequency- 
specific power, which quantifies the amount of energy contained in the iEEG signal 
at a particular frequency band. Aperiodic components of the power spectra refer to 
recorded activity with no characteristic frequency. We assessed LKM- associated dif-
ferences in aperiodic offset, which measures the overall up/down translation of the 
power spectra, exponent, which reflects the slope of the aperiodic component of the 
power spectra, and the knee frequency, which quantifies the aperiodic component’s 
“bend” or transition point wherein the dominant characteristics of the neural signal 
change (Fig. 2B; 23). For each channel, we estimated power in putative frequency 
bands by taking the average power of peaks above the aperiodic component falling 
within a priori designated ranges according to their center frequency (δ = 2- 4 Hz, 
θ = 4- 8 Hz, α = 8- 13 Hz, β = 13- 30 Hz, γ = 30- 55 Hz).

Quantifying Subject- Level Beta and Gamma Power Modulations. Data from 
each condition (baseline and LKM) were segmented into 1- s non- overlapping 
epochs. Time- frequency representations of power were computed for each epoch 
using Morlet wavelet convolution. For each frequency (in a logarithmically spaced 
range between 1 and 60 Hz), the number of cycles used in the wavelet transfor-
mation was defined as half of the frequency value. We extracted power estimates 

corresponding to the beta (13 to 30 Hz) and gamma (30 to 55 Hz) frequency 
range separately for each frequency band. Power values within each range were 
averaged across the frequency dimension for each epoch and channel, providing 
a measure of broadband beta and gamma power, respectively, for further analysis. 
To assess changes in beta power during meditation relative to baseline, z- scores 
were computed for the LKM epochs. First, the mean and SD of baseline power 
values were calculated across epochs and time points for each channel and used 
to z- score each LKM epoch across channels for each subject, yielding normalized 
values that reflect relative deviations from baseline (Fig. 6). For each subject, 
the median z- scored beta power was computed across all epochs and channels.

eBOSC Method. To assess FA meditation- induced temporal differences in oscil-
latory activity, we estimated the duration of oscillations by applying the eBOSC 
method (24, 70). By calculating both the strength (i.e., amplitude) and duration of 
a given oscillation, eBOSC provides a comprehensive characterization of oscillatory 
events. eBOSC allowed us to estimate the duration of oscillations by identifying 
significant oscillations that surpass a statistical power threshold, extracting the 
number of detected cycles in each significant oscillation, and converting the num-
ber of detected cycles to duration in a frequency- specific manner. eBOSC first 
performs time- frequency decomposition on continuous data. The resulting power 
spectra are fit linearly using robust regression to estimate the relationship between 
log(frequency) and log(power). A power threshold for each frequency was set at 
the 95% of a χ2- distribution of power values centered around the fitted estimate 
of background power at a given frequency based on the linear model fit. This 
establishes a statistical power threshold for determining a significant oscillation 
at a given frequency. Using the derived power threshold, oscillations and their 
associated time intervals were extracted. The duration threshold was set to zero, 
allowing us to compare both transient and sustained oscillatory episodes. The 
proportion of time spent oscillating at each frequency is calculated by summing 
detected time intervals and normalizing by total duration of a given iEEG recording.

Statistics.
Data quality checks. We used a nonparametric Pearson’s chi- square goodness- 
of- fit test to determine whether there was a significant difference in the proportion 
of data within each condition following preprocessing. We used a nonparametric 
Wilcoxon rank- sum test to check whether FOOOF model fit (R2) differed signifi-
cantly between conditions.
Hypothesis testing. We used a nonparametric Fisher’s exact test to assess whether 
a nonrandom association exists between experimental condition (baseline versus 
meditation) and categorical variables (presence versus absence of an oscillation 
within a given frequency band). To assess significant differences between condi-
tions for linear variables (oscillatory power and duration), we used nonparametric 
Wilcoxon rank- sum tests. One- sided Wilcoxon rank- sum tests were implemented 
where applicable based on empirical literature regarding meditation- induced 
modulation of β and γ oscillations (3, 16, 17).

Data, Materials, and Software Availability. Anonymized data from partici-
pants who consented to data sharing are available upon request with the approval 
of NeuroPace. Analysis scripts can be found at the following GitHub repository: 
https://github.com/christinamaher/iEEG_LKM (71).
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Abstract 
Selective attention plays a critical role in representation learning [1], with two competing computational 
cognitive models proposing distinct mechanisms by which attention arises. Feature-based reinforcement 
learning (FRL) posits selective attention arises through retrospective value learning, while serial hypothesis 
testing (SHT) suggests selective attention arises via prospective hypothesis testing. Here, we apply LaseNet 
[2], a novel neural network method for directly inferring latent variables from cognitive models with both 
synthetic and human data, to decode trial-by-trial attention as agents learn in a multidimensional 
environment. Networks trained on data generated from SHT models outperformed networks trained on data 
from FRL models in predicting attention in a labeled human dataset. SHT networks also showed limited 
generalizability to unseen data across model classes, reflecting distinct mechanisms for attention allocation 
under FRL and SHT models. This work utilizes a cutting-edge approach to infer attention dynamics from 
cognitive models, significantly enhancing their evaluation and providing deeper insights into the attention 
mechanisms that drive human representation learning. By leveraging this method, we can uncover latent 
attention processes underlying human representation learning, ultimately informing model-based neural 
analyses. 
 
Keywords:  Representation learning, multi-dimensional reinforcement learning, selective attention, serial 
hypothesis testing, LaseNet 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 Introduction 

Previous research highlights the role of selective attention in state representation learning [1]. Two main 
classes of computational cognitive models, each supported by choice data and neural evidence, propose 
competing mechanisms for implementing selective attention in multidimensional environments: feature-
based reinforcement learning (FRL) models suggest that selective attention emerges retrospectively through 
value learning of stimulus features [3]. In contrast, serial hypothesis testing (SHT) models propose a 
prospective process, where selective attention is dynamically allocated by iteratively testing hypotheses about 
which features of the task are relevant [4], [5]. Hybrid models that incorporate elements of both FRL and SHT 
have also been proposed [6].  

Traditional model evaluation methods based on maximum likelihood estimation (MLE) are limited to models 
for which analytically tractable likelihoods can be derived and computed [7]. SHT models, and sampling 
models more generally, are challenging analytically, and typically intractable due to combinatorial 
explosions. This has constrained cognitive models of attention to be biased towards FRL models. However, 
mounting evidence suggests that hypothesis sampling plays a key role in attention allocation [4], [5], [6]. Here, 
we use LaseNet, a novel method for direct inference of latent cognitive variables [2], to directly decode 
attention generated from different models in the FRL and SHT family. Our goal is to arbitrate between these 
model classes, and to generate precise predictions of attention allocation for model-based neural analysis [8].  

We hypothesized that: (1) networks trained on SHT models would label human participants' trial-by-trial 
hypotheses more accurately than those trained on FRL models, and (2) networks trained using a given class 
of models would not generalize well to data generated by models from a different model class. This would 
indicate that the two model classes capture distinct cognitive processes which the network is able to discern. 
To test these hypotheses, we trained LaseNet neural estimators to infer trial-by-trial attention allocation (i.e., 
their hypothesis about the most relevant feature) using synthetic data generated from each cognitive model. 
We evaluated the networks on held-out synthetic test data, and on a self-labeled human-generated dataset. 
All networks performed above chance, with SHT models outperforming FRL models in labeling the human 
dataset. Additionally, networks did not generalize well across model classes. Findings highlight the distinct 
mechanisms underlying representation learning proposed by FRL and SHT and provide a foundation for 
adjudicating between their competing theories. 

2 Task 

To train neural networks, we used a multidimensional RL task adapted from prior work [3], [9]. In the human 
experiment, participants (N=21 neurosurgical patients) completed six 18-trial games in which they made 
repeated choices between three stimuli varying in shape (square, oval, circle) and color (orange, yellow, blue) 
(Fig 1A). Each game had one relevant dimension (shape or color) and a target feature (e.g., square). After each 
choice, participants were rewarded with 80% probability if they selected the stimulus containing the target 
feature. To maximize reward, participants had to learn the target feature via trial-and-error. Changes in the 
relevant dimension were explicitly signaled between games. And participants were aware of the generative 
structure of the task (i.e. one target feature being relevant, and the exact reward probabilities). 

3  LaseNet Estimators   

We decoded trial-by-trial attention in the multidimensional RL task using five cognitive models. We used 
LaseNet [2], a novel technique based on neural Bayes estimation which directly maps choice data to latent 
variable space by using recurrent neural networks trained on synthetic data generated by a cognitive model. 
Unlike traditional maximum likelihood estimation, which requires predefined parameter space comparisons, 
LaseNet directly infers latent variables from behavior, enabling the use of models with analytically intractable 
or computationally intensive likelihoods. During the training phase (Fig. 1B, adapted from [2]), we create a 
synthetic dataset by simulating the desired cognitive model. LaseNet is trained using model-simulated 
observable data ! as input and a series of model-derived latent variables " as output. During the inference 
phase (Fig. 1C), the trained LaseNet takes the observable experimental data as input to infer a sequence of 
unobservable latent variables. In this project, our goal was to infer participants' attention allocation by 
decoding their trial-by-trial hypotheses # about the target feature. For each LaseNet estimator, we simulated 
20000 (", !) pairs with 720 trials in each pair as training data. In effect, this means that each individual 



parameter setting (“agent”) generated 40 games, each representing an instance of dynamic attention 
allocation with that parameter setting. While FRL models would produce fixed attention trajectories with the 
same parameter setting, SHT models change attention stochastically, so each game represents a possible 
trajectory through hypothesis space. We simulated an additional unseen 20 (", !) pairs with 720 trials each as 
testing data. Each pair was generated with uniform priors on model parameters %. Although the hypotheses 
participants are testing are latent in an experimental context, we collected one exploratory dataset (6 games, 
18 trials/game, 108 trials in total) in which the participant was instructed to self-label their hypothesis on each 
trial. Although we have access to these self-reported hypotheses, we do not have access to the generative 
model that produced their choices. This discrepancy allows us to assess the ability of LaseNet Estimator 
trained on different cognitive models to infer the participants’ latent hypotheses. 

4 Cognitive Models  

Two cognitive model classes have emerged to capture attention during state representation learning: FRL [3], 
[9] and SHT [4], [5], [6].  Models within these 
respective classes seek to explain how attentional 
mechanisms support efficient state representation 
learning by prioritizing relevant information.  FRL 
models propose agents learn to assign values to 
individual features of stimuli, which are then 
integrated to guide their choices. Attention is 
dynamically allocated to specific features based on 
their perceived value for maximizing future 
rewards. FRL is an extension of traditional RL, 
where the focus shifts from learning the value of 
entire stimuli to learning the value of discrete 
features within those stimuli. In this context, value 
learning over time drives attentional allocation 
towards the features that most reliably predict 
reward. We trained LaseNet Estimators to decode 
latent hypotheses using two FRL models: FRL and 
FRL with decay [9]. The FRL model maintains that participants learn and update values for each feature in 
the environment. To account for human’s limited working memory capacity, the FRL with decay model 
decays the value of nonchosen features. At each timestep, the hypothesis &t is taken to be the feature with the 
highest value.   
 
In contrast, SHT models suggest that efficient state representations arise through the evaluation of competing 
hypotheses regarding the most relevant environmental features. These models can be thought of as a tractable 
and computationally efficient approximations of full Bayesian inference. According to this framework, 
representation learning involves maintaining a single hypothesis &t  about the relevant feature and iteratively 
updating it as new information is received. Attention is directed toward the feature that the agent 
hypothesizes is most rewarding. To decode latent hypotheses, we trained LaseNet Estimators using three 
variants of hypothesis testing models: Serial Hypothesis Testing (SHT) [5], Value-based Serial Hypothesis 
Testing (vSHT) [6], and a Memory-Augmented Particle Filter (PF) [4].  

Fig 1. LaseNet method applied to multidimensional RL. A. Multidimensional RL task. B. Network is trained to predict latent 
variables from a cognitive model (i.e., target feature hypothesis) using simulated data. Input includes trial-wise observable data 
(stimuli, actions, rewards). C. Trained networks predict latent variable for experimental data with unknown ground truth. Schematic 
adapted from [2].  

Hypothesis Table

s1,a1,r1 Blue

s2,a2,r2 Blue

s3,a3,r3 Circle
Model Priors

!!

!"

Simulate 
Data

{(s1,a1,r1),
(s2,a2,r2),
…}

B. Training Phase C. Inference Phase

M
od

el
 V

ar
ia

bl
e:

 
H

yp
ot

he
si

s

Trial

("!, "", "$… "%)

(#"!, #"", #"$… #"%)

ℒ("; #")

Neural 
Estimator

Multidimensional 
RL task

{(s1,a1,r1),
(s2,a2,r2),
…
(sT,aT,rT)}

Simulated Evaluation/
Experimental Data Neural  Estimator

M
od

el
 V

ar
ia

bl
e:

H
yp

ot
he

si
s 

Trial

D
im
en
si
on
s

Features

ITI
(1 – 1.5s)

Trial 2
…

Choice/ Outcome
(1.5s)

Stimuli presentation
(RT – 20s)

Trial 1

+1
A.

1 18

18

Trial

0.4

0.6

0.8

P
ro
po

rti
on

C
or
re
ct
C
ho

ic
e Data Source

PF
FRL
FRL decay
SHT
vSHT
Human

PF
0.0

0.2

0.4

0.6

0.8

P
ro
po

rti
on

S
w
itc
he

s

Inter-dimensionalSwitch Type:

FRL FRL
decay

SHT vSHT

Intra-dimensional

A. B.
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= SEM; dashed line = chance) data. B. Proportion of inter- vs intra-
dimensional hypothesis switches by model (N=20 simulated 
agents, 40 games, 18 trials/game; error bars = SEM). 



 
5  Results 

Before training LaseNet, we validated the cognitive models by comparing the performance of synthetic test 
data to human data on the same task. All models successfully learned the task (Fig. 2A) and exhibited 
attention-switching behavior indicative of adaptive learning, with more inter-dimensional switching (Fig. 
2B).  

Next, we trained five separate LaseNet Estimators for each of our cognitive models. To evaluate training, we 
assessed each network's ability to label hypotheses using a held-out test set (N = 20 agents; Fig. 3A). All 
networks performed above chance (Fig 3B). Then, we evaluated each network’s ability to label trial-by-trial 
hypotheses in this self-labeled human dataset, in which the generative cognitive model is unknown. As we 
hypothesized, the SHT models performed better than the FRL models, indicating that the behavior in this 
dataset was more accurately captured by this model class (Fig 3C).  

Finally, we assessed the generalizability of the PF- and vSHT-trained networks to determine whether they are 
more effective at identifying hypothesis testing behavior specific to their own generative models. To do this, 
we evaluated these networks’ ability to label hypotheses using the synthetic test datasets generated by each 
cognitive model (Fig. 4). As hypothesized, model type had a significant effect on the network’s labeling 
accuracy (PF: F=7.2, p<0.0001, Fig 4A; vSHT: F=17.2, p<0.0001, Fig 4B). Both PF and vSHT networks 
performed best when labeling test data generated by the model it was trained on, with stronger performance 
within its model class and reduced accuracy when generalizing to FRL models. These results suggest that the 
networks capture model-specific cognitive mechanisms that are not generalizable across model classes. 

6  Discussion 

We trained neural networks using LaseNet to infer latent hypothesis testing under two distinct cognitive 
model classes, FRL and SHT, which capture attentional mechanisms underlying state representation learning. 
This innovative approach to cognitive dynamics inference circumvents the limitations of traditional model 
fitting and comparison methods, enabling us to infer latent cognitive variables with high predictive accuracy, 
and allowing for direct comparison of inferences across different model assumptions. 

Our results demonstrated that all networks performed well above chance in inferring hypotheses on 
simulated data (Fig. 3B). As hypothesized, the SHT models outperformed the FRL models in labeling human 
hypotheses from a self-labeled dataset with known ground truth (Fig. 3C). These findings suggest that the 
SHT models are more effective than FRL in capturing the cognitive processes underlying human state 
representation learning. Furthermore, the networks demonstrated low out-of-class generalizability (Fig. 4), 
which underscores their ability to isolate behavioral dynamics specific to each cognitive model. 

Fig 3. Evaluation of LaseNet Estimators on simulated and human data. A. PF-trained network’s hypothesis labeling accuracy for one 
example game in which it correctly labeled every trial (blue circle = true hypothesis, black cross = predicted hypothesis, green = 
reward, red = no reward; target feature = yellow). B. Hypothesis labeling accuracy (represented by the proportion of correctly labeled 
trials, error bars = SEM) for LaseNet Estimators evaluated on synthetic test data (N = 20 agents; 40 games, 18 trials per game) for each 
cognitive model.  All networks perform well above chance (dashed line). C. Hypothesis labeling accuracy (represented by the 
proportion of correctly labeled trials) for LaseNet Estimators evaluated on self-labeled human dataset (N = 1 participant; 6 games, 18 
trials per game).  All models perform significantly above chance (dashed line), however the hypothesis testing models (PF, SHT, vSHT) 
outperform the FRL models (FRL, FRL decay). 
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Several limitations warrant consideration. One potential limitation is the use of a uniform prior during the 
training phase for all models, which may not accurately reflect the true parameter ranges observed in human 
data. This discrepancy could explain the relatively lower performance of the SHT and vSHT models (Fig. 2A). 
Although the uniform prior avoided potential training biases, incorporating more accurate priors, derived 
from previous studies, could help constrain the parameter space more effectively and improve the network's 
ability to capture realistic patterns in the data. Additionally, performing hyperparameter tuning on unseen 
simulated data prior to training could further optimize model performance. 

An interesting aspect of our results lies within the SHT model class, which performed better at labeling human 
hypotheses (Fig. 3C) than FRL. Within this class, the SHT, vSHT, and PF models make different assumptions 
about how the proposal distribution is 
maintained. PF model captures state inference 
while accounting for working memory 
constraints, potentially making it a more 
biologically plausible model for human 
representation learning. Although we lack 
ground truth for participant behavior in 
experimental data, these competing models can 
be tested against neural data to identify which 
model's inferences is most reflective of observed 
neural activity. We are poised to investigate 
these inferences in our cohort of 21 
neurosurgical participants who completed the 
task and have corresponding 
cortical/subcortical local field potential 
recordings. These data will help us assess the 
assumptions of different models and identify 
which most closely aligns with neuronal 
activity, shedding light on the biological basis of 
attention in state representation learning. 
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Fig 4. LaseNet Estimator generalization.  A. PF-trained network achieves 
the highest hypothesis labeling accuracy on PF model data and performs 
better overall on SHT models compared to FRL models (N=20 agents, 40 
games, 18 trials/game; error bars = SEM). B. vSHT-trained network 
achieves the highest hypothesis labeling accuracy on vSHT model data 
and performs better overall on SHT models compared to FRL models 
(N=20 agents, 40 games, 18 trials/game; error bars = SEM). 


