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Summary11

Cognitive neurophysiology offers a unique framework for studying cognitive brain-behavior12

relationships by relating electrophysiological signals to complex behaviors. With the advent of13

new technical and behavioral paradigms, researchers can design cognitive experiments that14

leverage both the spatiotemporal resolution of electrophysiological data and the complexity15

of continuous behavioral variables. Analyzing these data requires sophisticated statistical16

methods that can interpret multidimensional neurophysiological data and dynamic, continuous17

behavioral variables. Often used statistical frameworks for nonparametric, cluster-based18

statistical tests are specifically focused on the contrast between discrete behavioral conditions19

but are not suitable for assessing how continuous variables predict the occurrence of clusters20

in neurophysiological data. NeuroCluster is an open-source Python toolbox for analysis21

of two-dimensional electrophysiological data (e.g. time-frequency representations) related to22

multivariate and continuous behavioral variables. NeuroCluster introduces a statistical approach23

which uses nonparametric cluster-based permutation testing in tandem with linear regression24

to identify two-dimensional clusters of neurophysiological activity that significantly encodes25

time-varying, continuous behavioral variables. Uniquely, it also supports multivariate analyses26

by allowing for multiple behavioral predictors to model neural activity. NeuroCluster addresses27

a methodological gap in statistical approaches to relate continuous, cognitive predictors to28

underlying electrophysiological activity with time and frequency resolution, to determine the29

neurocomputational processes giving rise to complex behaviors.30

Statement of need31

NeuroCluster addresses a methodological gap in cognitive and behavioral neuroscience, by32

providing a Python-based statistical toolbox to relate continuous predictors to two-dimensional33

neurophysiological activity. Continuous predictors vary over an experimental session, reflecting34

dynamic behaviors, underlying cognitive processes, complex movements, trial-varying experi-35

mental conditions, perceptual signals, or value-based trial outcomes (Collins & Shenhav, 2022;36

Hoy et al., 2021; Mathis & Mathis, 2020; ?). Standard analytical approaches for relating37

complex behavioral variables to neuronal activity sacrifice the complexity of neurophysiological38

signals by reducing the dimensionality of neuronal timeseries data (e.g., averaging across39

temporal, spectral, or spatial domains, or dimensionality reduction) (Crosse et al., 2016; Rey40

et al., 2015; Saez et al., 2018; Stokes & Spaak, 2016; ?; ?). Conversely, analysis methods41
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that preserve the complexity of neurophysiological data (i.e., two-dimensional timeseries)42

constrain behavioral predictors to discrete conditions (Domenech et al., 2020; Kosciessa et al.,43

2020; Maris & Oostenveld, 2007; ?; ?). Directly linking continuous experimental variables to44

two-dimensional physiological timeseries data offers a rigorous way to study brain-behavior45

relationships, by maintaining the complexity of dynamic behavior, without sacrificing the46

resolution of event-related neurophysiological activity.47

NeuroCluster uses cluster-based permutation testing to identify significant two-dimensional48

clusters with respect to continuous task variables. Cluster-based nonparametric statistical49

testing is a standard approach to analyze two-dimensional event-related time series data,50

while controlling for multiple comparisons and reducing family-wise error rates (Cohen, 2014;51

Groppe et al., 2011; Maris, 2012; Maris & Oostenveld, 2007; Nichols & Holmes, 2002).52

Neurophysiological activity is typically aggregated by condition to perform a two-sample53

cluster-based permutation test, which tests whether the neuronal encoding patterns differ54

between two discrete task conditions, rather than continuous, trial-varying features (Bullmore55

et al., 1999; Maris & Oostenveld, 2007). While two-sample cluster-based permutation tests56

provide a nonparametric statistical inference tool for identifying the presence of significant57

clusters of activity between two conditions, they are insufficient for identifying the presence of58

clusters as a function of continuously varying predictors. NeuroCluster provides a solution59

to this analytical gap by performing linear regressions at individual points across the 2D60

neural matrix. This approach enables users to quantify the degree to which a continuous61

predictor is related to neurophysiological activity at the pixel-level and to perform analyses with62

multivariate behavioral data, by incorporating multiple continuous or categorical covariates63

in the regression models. The t-statistics corresponding to the predictor of interest from the64

pixel-wise regressions are thresholded by a critical t-statistic to control for the FDR, creating65

a binary 2D matrix (Genovese et al., 2002). The binary 2D matrix is then used to identify66

putative 2D clusters of activation related to the continuous predictor of interest. This process is67

repeated many times with the predictor of interest randomly permuted to produce a surrogate68

distribution of 2D clusters. Clusters that survive cluster-based permutation testing are classified69

as significant regions of activation with respect to the specified continuous predictor.70

NeuroCluster is applicable for numerous analysis goals; the major use cases are performing71

an initial exploratory analysis to generate specific hypotheses, determine data-driven windows72

interest, or to identify regional patterns of significant clusters within and between subjects.73

Future adaptations of NeuroCluster may implement mixed effects regressions, nonlinear74

mapping models, or group-level analysis frameworks (Bianchi et al., 2019; Ivanova et al.,75

2022; König et al., 2024; Yu et al., 2022). We demonstrate our approach with human76

intracranial local field potential data, but NeuroCluster is applicable for all types of two-77

dimensional neurophysiological measures (e.g., spatiotemporal clusters from EEG/MEG, cross-78

frequency interactions). To our knowledge, NeuroCluster presents a novel Python-based79

statistical software package. NeuroCluster is designed to supplement existing Python-based80

electrophysiological analysis toolboxes (Donoghue et al., 2020; Gramfort, 2013; Kosciessa et81

al., 2020; Whitten et al., 2011), particularly MNE-Python.82

NeuroCluster Documentation83

NeuroCluster is accompanied by a detailed tutorial which outlines the workflow (Fig. 1)84

for implementing this approach with time-frequency power estimates from multi-region LFP85

recording.86
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Figure 1: NeuroCluster workflow. This approach involves three key steps: (1) determine cluster statistic
in true data, (2) generate a null distribution of cluster statistics by permuting dataset, (3) determine
significance of true cluster statistic against null distribution.

Below we outline the statistical approach implemented by NeuroCluster for performing87

nonparametric permutation-based cluster testing using time-frequency resolved power estimates88

from neural data estimated using (?) and continuous predictors (i.e., latent cognitive processes,89

behavior, or experimental conditions). In these example data, we are testing the hypothesis90

that RPEs are significantly encoded in the electrophysiological signal from a given iEEG channel91

time-frequency representation (TFR). The following methodological description is based on92

data collected from a neurosurgical epilepsy patient undergoing stereotactic EEG (sEEG)93

monitoring for treatment-resistant depression. During the monitoring period, the patient94

performed a value-based decision-making task while local field potentials (LFPs) were recorded95
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from both cortical and subcortical sites. By analyzing the patient’s behavior during the task,96

we derived continuous variables representing hypothesized latent cognitive processes—such as97

the trial-by-trial computation of reward prediction errors (RPEs)—to examine their relationship98

with neural activity.99

1. Determine cluster statistic in true data100

A. Define clusters: At each time-frequency index, we perform a linear univariate (or multivariate)101

regression using behaviorally-derived independent variables (e.g., latent cognitive variables,102

behavioral measures, task conditions) to predict neuronal activity (i.e., power). The β coefficient103

represents the strength and direction of the relationship between each independent variable104

and the dependent variable. It is estimated from the regression model and reflects how changes105

in the independent variable are associated with changes in power at the specific time-frequency106

pair. Pixel-wise regressions are parallelized for speed. For each time-frequency pair, the β107

coefficient for the regressor of interest (the independent variable of primary interest) is extracted108

from the regression results (Fig 2A). A t-statistic is computed for the β coefficient to capture109

how significantly different it is from zero (Fig 2B). A significance threshold is applied to the110

t-statistics of the β coefficient for the regressor of interest. If the t-statistic for a time-frequency111

pair exceeds the significance threshold, the pair is deemed significant. Clusters are then defined112

as adjacent time-frequency pairs where all pairs within the cluster have t-statistics exceeding113

the threshold, according to the test’s desired tails (Fig 2C).114

B. Compute cluster statistics: For each identified cluster, sum the t-statistics of all time-115

frequency pairs within the cluster. In a two-tailed test (the default), compute both the116

maximum and minimum cluster sums (Fig 2D).117

2. Generate null distribution of cluster statistics118

A. Permutation procedure: Labels for the behavioral predictor of interest are shuffled for the119

desired number of permutations.120

B. Recalculate cluster statistic: Steps 1A/1B are repeated to define clusters and compute121

cluster statistics for each permuted dataset.122

C. Construct null distribution: The cluster statistics from all permutations are compiled to123

create a null distribution, representing the distribution of cluster statistics under the null124

hypothesis (Fig 2E). The permuted TFR regressions are also parallelized at the pixel-level,125

while each permutation is performed sequentially. We tested many iterations of these functions126

with different parallelization approaches and sequential permutation-level computations with127

pixel-level parallelization within each TFR regression was the fastest method.128

3. Determine cluster significance129

A. Compare true cluster statistic to null distribution to compute p-values: The proportion of130

cluster statistics in the null distribution falling above (or below) the true cluster statistic(s)131

determines the p-value associated with the cluster(s) identified in the true data (Fig 2E).132
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DRAFTFigure 2: NeuroCluster methods. A. β coefficients for continuous predictor of interest (RPE) predicting
power in given time-frequency pair (red outline = maximum positive cluster; blue outline = maximum
negative cluster). B. T-statistics corresponding with βRPE coefficients. C. Clusters as determined using
t-critical threshold. D. Maximum positive and negative clusters determined by summing t-statistics in
identified clusters. E. Null distribution of cluster statistics generated by permuting dataset for predictor
of interest (100 permutations; red dashed line = true cluster statistic.

4. Comparison of results to existing methods.133

To evaluate the advantages of NeuroCluster, we compared its results to those obtained using134

MNE-Python’s two-sample cluster-based permutation test. This approach requires discretizing135

the continuous variable of interest (RPE) into distinct categories, which reduces the resolution136

of the behavioral predictor. Additionally, MNE-Python’s implementation does not support137

multivariate analyses, limiting the ability to model multiple behavioral covariates simultaneously.138

When applying the two-sample cluster test to our data, we did not identify any significant139

clusters of increased or decreased activity related to RPE. In contrast, NeuroCluster successfully140

detected significant clusters (Fig. 2), demonstrating its ability to preserve the richness of141

continuous behavioral variables and reduce the likelihood of false negatives. This comparison142

highlights NeuroCluster as a powerful and flexible alternative to existing statistical methods143

for analyzing continuous brain-behavior relationships.144

5. Metric validation in synthetic data with known ground truth.145

Thus far, we have demonstrated NeuroCluster using biological data. However, because these146

data are experimental, there is no definitive ground truth for the observed neural fluctuations147

associated with behavioral predictors. To validate the NeuroCluster method, we generated148

synthetic TFR data (2-200 Hz, sampling rate = 250, -1 to +1 seconds around “choice”, 1149

channel, 100 trials) with a known linear association between power in a specific time-frequency150

region and a continuous behavioral variable—in this case, the expected value of choice. Code for151

simulating these data is provided in the NeuroCluster repository. We then applied NeuroCluster152

to the synthetic dataset and, as expected, successfully identified a significant positive cluster153

corresponding to the known association embedded in the data (Fig. 3). This validation154

confirms the accuracy of NeuroCluster and provides evidence against its susceptibility to false155

positives.156
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Figure 3: NeuroCluster validation in synthetic data. A. Time-frequency representation (TFR) showing
power differences between high (>0.50) and low (<0.50) expected value trials in synthetic data (1
channel, 100 trials, time-locked to “choice”). B. A significant positive cluster identified in the expected
time-frequency region, consistent with the predefined association embedded in the synthetic dataset.
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